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glum

glum is a fast, modern, Python-first GLM estimation library. Generalized linear modeling (GLM) is a core statistical
tool that includes many common methods like least-squares regression, Poisson regression and logistic regression as
special cases. In addition to fitting basic GLMs, glum supports a wide range of features. These include:

• Built-in cross validation for optimal regularization, efficiently exploiting a “regularization path”

• L1 and elastic net regularization, which produce sparse and easily interpretable solutions

• L2 regularization, including variable matrix-valued (Tikhonov) penalties, which are useful in modeling corre-
lated effects

• Normal, Poisson, logistic, gamma, and Tweedie distributions, plus varied and customizable link functions

• Dispersion and standard errors

• Box and linear inequality constraints, sample weights, offsets.

• A scikit-learn-like API to fit smoothly into existing workflows.

glum was also built with performance in mind. The following figure shows the runtime of a realistic example using an
insurance dataset. For more details and other benchmarks, see the Benchmarks section.

We suggest visiting the Installation and Getting Started sections first.
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CHAPTER

ONE

INSTALLATION

You can install the package through conda:

conda install glum -c conda-forge

Head onwards to Getting Started to try it out!
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CHAPTER

TWO

GETTING STARTED: FITTING A LASSO MODEL

The purpose of this tutorial is to show the basics of glum. It assumes a working knowledge of python, regularized
linear models, and machine learning. The API is very similar to scikit-learn. After all, glum is based on a fork of
scikit-learn.

If you have not done so already, please refer to our installation instructions for installing glum.

[1]: import pandas as pd
import sklearn
from sklearn.datasets import fetch_openml
from glum import GeneralizedLinearRegressor, GeneralizedLinearRegressorCV

2.1 Data

We start by loading the King County housing dataset from openML and splitting it into training and test sets. For
simplicity, we don’t go into any details regarding exploration or data cleaning.

[2]: house_data = fetch_openml(name="house_sales", version=3, as_frame=True)

# Use only select features
X = house_data.data[

[
"bedrooms",
"bathrooms",
"sqft_living",
"floors",
"waterfront",
"view",
"condition",
"grade",
"yr_built",

]
].copy()

# Targets
y = house_data.target

[3]: X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, test_size = 0.3, random_state=5

)
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2.2 GLM basics: fitting and predicting using the normal family

We’ll use glum.GeneralizedLinearRegressor to predict the house prices using the available predictors.

We set three key parameters:

• family: the family parameter specifies the distributional assumption of the GLM and, as a consequence, the loss
function to be minimized. Accepted strings are ‘normal’, ‘poisson’, ‘gamma’, ‘inverse.gaussian’, and ‘binomial’.
You can also pass in an instantiated glum distribution (e.g. glum.TweedieDistribution(1.5) )

• alpha: the constant multiplying the penalty term that determines regularization strength. (Note:
GeneralizedLinearRegressor also has an alpha-search option. See the GeneralizedLinearRegressorCV
example below for details on how alpha-search works).

• l1_ratio: the elastic net mixing parameter (0 <= l1_ratio <= 1). For l1_ratio = 0, the penalty is the
L2 penalty (ridge). For l1_ratio = 1, it is an L1 penalty (lasso). For 0 < l1_ratio < 1, the penalty is a
combination of L1 and L2.

To be precise, we will be minimizing the function with respect to the parameters, 𝛽:

1

𝑁
(X𝛽 − 𝑦)2 + 𝛼‖𝛽‖1 (2.1)

[4]: glm = GeneralizedLinearRegressor(family="normal", alpha=0.1, l1_ratio=1)

The GeneralizedLinearRegressor.fit() method follows typical sklearn API style and accepts two primary in-
puts:

1. X: the design matrix with shape (n_samples, n_features).

2. y: the n_samples length array of target data.

[5]: glm.fit(X_train, y_train)

[5]: GeneralizedLinearRegressor(alpha=0.1, l1_ratio=1)

Once the model has been estimated, we can retrieve useful information using an sklearn-style syntax.

[6]: # retrieve the coefficients and the intercept
coefs = glm.coef_
intercept = glm.intercept_

# use the model to predict on our test data
preds = glm.predict(X_test)

preds[0:5]

[6]: array([ 482648.22861066, 142902.68859995, 539452.61266391,
569693.78048569, 1042446.90903451])

6 Chapter 2. Getting Started: fitting a Lasso model



glum

2.3 Fitting a GLM with cross validation

Now, we fit using automatic cross validation with glum.GeneralizedLinearRegressorCV. This mirrors the com-
monly used cv.glmnet function.

Some important parameters:

• alphas: for GeneralizedLinearRegressorCV, the best alpha will be found by searching along the regular-
ization path. The regularization path is determined as follows:

1. If alpha is an iterable, use it directly. All other parameters governing the regularization path are ignored.

2. If min_alpha is set, create a path from min_alpha to the lowest alpha such that all coefficients are zero.

3. If min_alpha_ratio is set, create a path where the ratio of min_alpha / max_alpha =
min_alpha_ratio.

4. If none of the above parameters are set, use a min_alpha_ratio of 1e-6.

• l1_ratio: for GeneralizedLinearRegressorCV, if you pass l1_ratio as an array, the fit method will
choose the best value of l1_ratio and store it as self.l1_ratio_.

[7]: glmcv = GeneralizedLinearRegressorCV(
family="normal",
alphas=None, # default
min_alpha=None, # default
min_alpha_ratio=None, # default
l1_ratio=[0, 0.5, 1.0],
fit_intercept=True,
max_iter=150

)
glmcv.fit(X_train, y_train)
print(f"Chosen alpha: {glmcv.alpha_}")
print(f"Chosen l1 ratio: {glmcv.l1_ratio_}")

Chosen alpha: 0.0003274549162877732
Chosen l1 ratio: 0.0

Congratulations! You have finished our getting started tutorial. If you wish to learn more, please see our other tutorials
for more advanced topics like Poisson, Gamma, and Tweedie regression, high dimensional fixed effects, and spatial
smoothing using Tikhonov regularization.

[ ]:

2.3. Fitting a GLM with cross validation 7
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CHAPTER

THREE

YET ANOTHER GLM PACKAGE?

glum was inspired by a desire to have a fast, maintainable, Python-first library for fitting GLMs with an extensive
feature set.

At the beginning, we thoroughly examined all the existing contenders. The two mostly feature-complete options were
glmnet and H2O. In many ways, the R package “glmnet” is the gold standard for regularized glm implementations.
However, it is missing several useful features like built-in support for Tweedie and Gamma distributions. It also suffers
from impossible-to-maintain source and thus has frequent bugs and segfaults. Although Python-to-glmnet interfaces
exist, none is complete and well maintained. We also looked into the H2O implementation. It’s more feature-complete
than glmnet, but there are serious integration issues with Python. As we discovered, there is also substantial room to
improve performance beyond the level of glmnet or H2O.

So we decided to improve an existing package. Which one? To be a bit more precise, the question we wanted to answer
was “Which library will be the least work to make feature-complete, high performance and correct?” To decide, we
began by building a suite of benchmarks to compare the different libraries, and compared the libraries in terms of speed,
the number of benchmarks that ran successfully, and code quality. In the end, we went with the code from an sklearn
pull request. We called it “sklearn-fork” and actually gave our code that name for quite a while too. sklearn-fork had
decent, understandable code, converged in most situations, and included many of the features that we wanted. But it
was slow. We figured it would be easier to speed up a functioning library than fix a broken but fast library. So we
decided to start improving sklearn-fork. As a side note, a huge thank you to Christian for producing the baseline code
for glum.

Ultimately, improving sklearn-fork seems to have been the right choice. We feel we have achieved our goals and glum
is now feature-complete, high-performance and correct. However, over time, we uncovered more flaws in the optimizer
than expected and, like most projects, building sklearn-fork into a feature-complete, fast, GLM library was a harder
task than we predicted. When we started, sklearn-fork successfully converged for most problems. But, it was slow,
taking hundreds or thousands of iteratively reweighted least squares (IRLS) iterations, many more than other similar
libraries. Overall, the improvements we’ve made separate into three categories: algorithmic improvements, detailed
software optimizations, and new features.

3.1 Algorithmic improvements

At the beginning, the lowest-hanging fruit came from debugging the implementation of IRLS and coordinate descent
(CD) because those components were quite buggy and suboptimal. The algorithm we use is from [Yuan2012]. We
started by understanding the paper and relating it back to the code. This led to a circuitous chase around the code base,
an effort that paid off when we noticed a hard-coded value in the optimizer was far too high. Fixing this was a one-line
change that gave us 2-4X faster convergence!

Another large algorithmic improvement to the optimizer came from centering the predictor matrix to have mean zero.
Coordinate descent cycles through one feature at a time, which is a strategy that works poorly with non-centered pre-
dictors because changing any coefficient changes the mean. In several cases, zero-centering reduced the total number
of IRLS iterations by a factor of two, while leaving solutions unchanged. As we discuss below, centering is nontrivial
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in the case of a sparse matrix because we don’t want to modify the zero entries and destroy the sparsity. This was a
major impetus for starting a tabular matrix handling library, tabmat, as an extension of glum.

Much later on, we made major improvements to the quality of the quadratic approximations for binomial, gamma, and
Tweedie distributions, where the the original Hessian approximations turned out to be suboptimal. For the first couple
months, we took for granted that the quadratic log-likelihood approximations from sklearn-fork were correct. However,
after substantial investigation, it turned out that we were using a Fisher information matrix-based approximation to the
hessian rather than the true Hessian. This was done in sklearn-fork because the Fisher information matrix (FIM) is
guaranteed to be positive definite for any link function or distribution, a necessary condition for guaranteed convergence.
However, in cases where the true Hessian is also positive definite, using it will result in much faster convergence. It
turned out that switching to using the true Hessian for these special cases (linear, Poisson, gamma, logistic regression
and Tweedie regression for 1 < p < 2) gave huge reductions in the number of IRLS iterations. Some gamma regression
problems dropped from taking 50-100 iterations to taking just 5-10 iterations.

Other important improvements:

• Using numerically stable log-likelihood, gradient and hessian formulas for the binomial distribution. In the naive
version, we encounter floating point infinities for large parameter values in intermediate calculations.

• Exploring the use of an ADMM iterative L1 solver compared to our current CD solver. We ended up sticking
with CD. This helped identify some crucial differences between glum and H2O, which uses an ADMM solver.

• Active set iteration where we use heuristics to improve performance in L1-regularized problems by predicting,
at the beginning of each iteration, which coefficients are likely to remain zero. This effectively reduces the set of
predictors and significantly improves performance in severely L1-regularized problems.

• Making sure that we could correctly compare objective functions between libraries. The meaning of the regular-
ization strength varies depending on the constant factors that multiply the log-likelihood.

3.2 Software optimizations

Substantial performance improvements came from many places.

• Removing redundant calculations and storing intermediate results to re-use later. The line search step had a
particularly large number of such optimization opportunities.

• Cython-izing the coordinate descent implementation based on a version from sklearn’s Lasso implementation.
Several optimizations were possible even beyond the sklearn Lasso implementation and we hope to contribute
some of these upstream.

• Hand-optimizing the formulas and Cython-izing the code for common distributions’ log likelihood, gradients,
and hessians. We did this for normal, Poisson, gamma, Tweedie, binomial distributions.

The largest performance improvements have come from better tabular matrix handling. Initially, we were only handling
uniformly dense or sparse matrices and using numpy and scipy.sparse to perform matrix operation. Now, we handle
general “split” matrices that can be represented by a combination of dense, sparse, and categorical subcomponents.
In addition, we built a StandardizedMatrix which handles the offsetting and multiplication needed to standardize
a matrix to have mean zero and standard deviation one. We store the offsets and multipliers to perform this operation
without modifying the underlying matrices.

We took our first step into developing custom matrix classes when we realized that even the pure dense and sparse
matrix implementations were suboptimal. The default scipy.sparse matrix-multiply and matrix-vector product imple-
mentations are not parallel. Furthermore, many matrix-vector products only involve a small subset of rows or columns.
As a result, we now have custom implementations of these operations that are parallelized and allow operating on a
restricted set of rows and columns.

Before continuing, a quick summary of the only three matrix operations that we care about for GLM estimation:

• Matrix-vector products. X.dot(v) in numpy notation

10 Chapter 3. Yet another GLM package?
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• Transpose-matrix-vector products. X.T.dot(v)

• Sandwich products. X.T @ diag(d) @ X

As a matrix multiplication, the sandwich products are higher-dimensional operations than the matrix-vector products
and, as such, are particularly expensive. Not only that, but the default implementation in numpy or scipy.sparse is
going to be very inefficient. With dense numpy arrays, if we perform X.T @ diag(d), that will allocate and create a
whole new matrix that’s just as large as the original X matrix. Then, we still need to perform a matrix multiply! As
a result, we implemented a parallelized, cache-friendly, SIMD-optimized sandwich product operation that avoids the
copy and performs the operation as a single matrix-multiply-like operation. We are in the process of contributing an
implementation to the BLIS library.

The next big matrix optimization came from realizing that most data matrices are neither fully dense nor fully sparse.
Some columns will be very sparse (e.g. number of parrots owned), some columns will be one-hot encoded categoricals
(e.g. preferred parrot species) while other columns will be dense (e.g. volume in liters of the most recently seen parrot).
So we built a SplitMatrix class that splits a matrix into dense and sparse subcomponents. A threshold of around 90%
sparsity seems to be about the level at which it is beneficial to use a simple CSR sparse matrix instead of a dense matrix.
The benefit of this split matrix was large, improving performance across all the matrix operations by 2-5x.

Later on, we also added categorical matrix handling to the mix. Many categorical columns will be very sparse. If
there are 100 evenly distributed categories, each column will have 99% sparse. However, simply treating them as a
general sparse matrix is leaving a lot on the table. Beyond just being sparse, we know that every non-zero entry is a one
and that every row has only a single non-zero column. This is particularly beneficial for sandwich products where the
output ends up being diagonal. But, despite the clear gains, adding categorical matrices was quite a large undertaking.
We needed to modify our data generation process to produce categoricals instead of one-hot-encoded columns, add
and optimize each of our matrix operations for categoricals, and specify “sandwich” interactions between categorical
matrices, sparse matrices, and dense matrices. The result was a large improvement in runtime, with some sandwich
and matrix-transpose-dot operations sped up by more than an order of magnitude.

The end result of all these matrix optimizations is that we now have a fairly complete library for handling simple
sandwich, dot and transpose-dot operations on a mix of dense, sparse and categorical matrices. This is perfect for most
tabular data! So, we’ve split this component off into its own library, tabmat.

3.3 New Features

In addition to the heavy focus on optimization and algorithmic correctness, we’ve also added a few important features
to glum beyond what was already available in sklearn-fork.

• Automatic cross validation and regularization path handling similar in behavior to glmnet.

• Linear inequality constraints on coefficients.

• A step size convergence criterion in addition to the typical gradient-norm based criterion.

• The binomial distribution, and as a result, L1 and L2-regularized logistic regression.

• Standard errors.

3.3. New Features 11
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CHAPTER

FOUR

BENCHMARKS AGAINST GLMNET AND H2O

The following benchmarks were run on a MacBook Pro laptop with a quad-core Intel Core i5.

The title of each plot refers to both which dataset the benchmark was run on and whether a L2 ridge regression penalty
or an L1 lasso penalty was included. For example “Narrow-Insurance-Ridge” was run on the narrow-insurance
dataset with a ridge regression penalty. Each dataset/penalty pair is tested on five distributions that cover most of the
common GLM types. The outcome variable is modified appropriately so that the behavior is similar to that expected
for the distribution. For example, for the Poisson regression, we predict the number of claims per person. And for the
binomial regression, we predict whether any given individual has ever had a claim. For the housing dataset, we only
test three distributions because it does not contain count data that can be used as an outcome.

Note that glum was originally developed to solve problems where N >> K (number of observations is larger than the
number of predictors), which is the case for the following benchmarks.

If a bar goes out of the range of the chart, the exact runtime is printed on the bar with an arrow indicating that the bar
is truncated.
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Note that the r-glmnet result for the wide-insurance-ridge Poisson benchmark is missing because glmnet did
not converge after several hours of runtime.
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CHAPTER

FIVE

TUTORIALS

5.1 GLM Tutorial: Poisson, Gamma, and Tweedie with French Motor
Third-Party Liability Claims

Intro

This tutorial shows why and how to use Poisson, Gamma, and Tweedie GLMs on an insurance claims dataset using
glum. It was inspired by, and closely mirrors, two other GLM tutorials that used this dataset:

1. An sklearn-learn tutorial, Tweedie regression on insurance claims, which was created for this (partially merged)
sklearn PR that we based glum on

2. An R tutorial, Case Study: French Motor Third-Party Liability Claims with R code.

Background

Insurance claims are requests made by a policy holder to an insurance company for compensation in the event of
a covered loss. When modeling these claims, the goal is often to estimate, per policy, the total claim amount per
exposure unit. (i.e. number of claims × average amount per claim per year). This amount is also referred to as the pure
premium.

Two approaches for modeling this value are:

1. Modeling the total claim amount per exposure directly

2. Modeling number of claims and claim amount separately with a frequency and a severity model

In this tutorial, we demonstrate both approaches. We start with the second option as it shows how to use two different
families/distributions (Poisson and Gamma) within a GLM on a single dataset. We then show the first approach using
a single poison-gamma Tweedie regressor (i.e. a Tweedie with power 𝑝 ∈ (1, 2))

5.1.1 Table of Contents

• 1. Load and Prepare Datasets from Openml.org

• 2. Frequency GLM - Poisson Distribution

• 3. Severity GLM - Gamma Distribution

• 4. Combined GLM - Tweedie Distribution

[1]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as optimize

(continues on next page)
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(continued from previous page)

import scipy.stats
from dask_ml.preprocessing import Categorizer
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import ShuffleSplit
from glum import GeneralizedLinearRegressor
from glum import TweedieDistribution

from load_transform import load_transform

5.1.2 1. Load and prepare datasets from Openml

back to table of contents

First, we load in our dataset from openML and apply several transformations. In the interest of simplicity, we do not
include the data loading and preparation code in this notebook. Below is a list of further resources if you wish to explore
further:

1. If you want to run the same code yourself, please see the helper functions here.

2. For a detailed description of the data, see here.

3. For an excellent exploratory data analysis, see the case study paper linked above.

Some important notes about the dataset post-transformation:

• Total claim amounts are aggregated per policy

• For ClaimAmountCut, the claim amounts (pre-aggregation) were cut at 100,000 per single claim. We choose to
use this amount rather than the raw ClaimAmount. (100,000 is the 0.9984 quantile but claims > 100,000 account
for 25% of the overall claim amount)

• We aggregate the total claim amounts per policy

• ClaimNb is the total number of claims per policy with claim amount greater zero

• VehPower, VehAge, and DrivAge are clipped and/or digitized into bins so that they can be used as categoricals
later on

[2]: df = load_transform()
with pd.option_context('display.max_rows', 10):

display(df)

ClaimNb Exposure Area VehPower VehAge DrivAge BonusMalus \
IDpol
1 0 0.10000 D 5 0 5 50
3 0 0.77000 D 5 0 5 50
5 0 0.75000 B 6 1 5 50
10 0 0.09000 B 7 0 4 50
11 0 0.84000 B 7 0 4 50
... ... ... ... ... ... ... ...
6114326 0 0.00274 E 4 0 5 50
6114327 0 0.00274 E 4 0 4 95
6114328 0 0.00274 D 6 1 4 50
6114329 0 0.00274 B 4 0 5 50
6114330 0 0.00274 B 7 1 2 54

(continues on next page)
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(continued from previous page)

VehBrand VehGas Density Region ClaimAmount ClaimAmountCut
IDpol
1 B12 Regular 1217 R82 0.0 0.0
3 B12 Regular 1217 R82 0.0 0.0
5 B12 Diesel 54 R22 0.0 0.0
10 B12 Diesel 76 R72 0.0 0.0
11 B12 Diesel 76 R72 0.0 0.0
... ... ... ... ... ... ...
6114326 B12 Regular 3317 R93 0.0 0.0
6114327 B12 Regular 9850 R11 0.0 0.0
6114328 B12 Diesel 1323 R82 0.0 0.0
6114329 B12 Regular 95 R26 0.0 0.0
6114330 B12 Diesel 65 R72 0.0 0.0

[678013 rows x 13 columns]

5.1.3 2. Frequency GLM - Poisson distribution

back to Table of Contents

We start with the first part of our two part GLM - modeling the frequency of claims using a Poisson regression. Below,
we give some background on why the Poisson family makes the most sense in this context.

2.1 Why Poisson distributions?

Poisson distributions are typically used to model the number of events occurring in a fixed period of time when the
events occur independently at a constant rate. In our case, we can think of motor insurance claims as the events, and a
unit of exposure (i.e. a year) as the fixed period of time.

To get more technical:

We define:

• 𝑧: number of claims

• 𝑤: exposure (time in years under risk)

• 𝑦 = 𝑧
𝑤 : claim frequency per year

• 𝑋: feature matrix

The number of claims 𝑧 is an integer, 𝑧 ∈ [0, 1, 2, 3, . . .]. Theoretically, a policy could have an arbitrarily large number
of claims—very unlikely but possible. The simplest distribution for this range is a Poisson distribution 𝑧 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛.
However, instead of 𝑧, we will model the frequency 𝑦. Nonetheless, this is still (scaled) Poisson distributed with
variance inverse proportional to 𝑤, cf. wikipedia:Reproductive_EDM.

To verify our assumptions, we start by plotting the observed frequencies and a fitted Poisson distribution (Poisson
regression with intercept only).

[3]: # plt.subplots(figsize=(10, 7))
df_plot = (

df.loc[:, ['ClaimNb', 'Exposure']].groupby('ClaimNb').sum()
.assign(Frequency_Observed = lambda x: x.Exposure / df['Exposure'].sum())

)
(continues on next page)
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(continued from previous page)

mean = df['ClaimNb'].sum() / df['Exposure'].sum()

x = range(5)
plt.scatter(x, df_plot['Frequency_Observed'].values, color="blue", alpha=0.85, s=60,␣
→˓label='observed')
plt.scatter(x, scipy.stats.poisson.pmf(x, mean), color="orange", alpha=0.55, s=60, label=
→˓"poisson fit")
plt.xticks(x)
plt.legend()
plt.title("Frequency");

This is a strong confirmation for the use of a Poisson when fitting!

2.2 Train and test frequency GLM

Now, we start fitting our model. We use claims frequency = claim number/exposure as our outcome variable. We then
divide the dataset into training set and test set with a 9:1 random split.

Also, notice that we do not one hot encode our columns. Rather, we take advantage of glum’s integration with tabmat,
which allows us to pass in categorical columns directly! tabmat will handle the encoding for us and even includes
a handful of helpful matrix operation optimizations. We use the Categorizer from dask_ml to set our categorical
columns as categorical dtypes and to ensure that the categories align in fitting and predicting.

[4]: z = df['ClaimNb'].values
weight = df['Exposure'].values
y = z / weight # claims frequency

ss = ShuffleSplit(n_splits=1, test_size=0.1, random_state=42)
train, test = next(ss.split(y))

categoricals = ["VehBrand", "VehGas", "Region", "Area", "DrivAge", "VehAge", "VehPower"]
predictors = categoricals + ["BonusMalus", "Density"]
glm_categorizer = Categorizer(columns=categoricals)

X_train_p = glm_categorizer.fit_transform(df[predictors].iloc[train])
(continues on next page)
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(continued from previous page)

X_test_p = glm_categorizer.transform(df[predictors].iloc[test])
y_train_p, y_test_p = y[train], y[test]
w_train_p, w_test_p = weight[train], weight[test]
z_train_p, z_test_p = z[train], z[test]

Now, we define our GLM using the GeneralizedLinearRegressor class from glum.

• family='poisson': creates a Poisson regressor

• alpha_search=True: tells the GLM to search along the regularization path for the best alpha

• l1_ratio = 1 tells the GLM to only use l1 penalty (not l2). l1_ratio is the elastic net mixing parameter. For
l1_ratio = 0, the penalty is an L2 penalty. For l1_ratio = 1, it is an L1 penalty. For 0 < l1_ratio <
1, the penalty is a combination of L1 and L2.

See the GeneralizedLinearRegressor class API documentation for more details.

Note: glum also supported a cross validation model GeneralizedLinearRegressorCV. However, because cross validation
requires fitting many models, it is much slower and we don’t demonstrate it in this tutorial.

[5]: f_glm1 = GeneralizedLinearRegressor(family='poisson', alpha_search=True, l1_ratio=1, fit_
→˓intercept=True)

f_glm1.fit(
X_train_p,
y_train_p,
sample_weight=w_train_p

);

pd.DataFrame({'coefficient': np.concatenate(([f_glm1.intercept_], f_glm1.coef_))},
index=['intercept'] + f_glm1.feature_names_).T

[5]: intercept VehBrand__B1 VehBrand__B10 VehBrand__B11 \
coefficient -4.269268 -0.003721 -0.010846 0.138466

VehBrand__B12 VehBrand__B13 VehBrand__B14 VehBrand__B2 \
coefficient -0.259298 0.0 -0.110712 -0.003604

VehBrand__B3 VehBrand__B4 ... VehAge__1 VehAge__2 \
coefficient 0.044075 0.0 ... 0.045494 -0.139428

VehPower__4 VehPower__5 VehPower__6 VehPower__7 VehPower__8 \
coefficient -0.070054 -0.028142 0.0 0.0 0.016531

VehPower__9 BonusMalus Density
coefficient 0.164711 0.026764 0.000004

[1 rows x 60 columns]

To measure our model’s test and train performance, we use the deviance function for the Poisson family. We can get
the total deviance function directly from glum’s distribution classes and divide it by the sum of our sample weight.

Note: a Poisson distribution is equivalent to a Tweedie distribution with power = 1.

[6]: PoissonDist = TweedieDistribution(1)
print('training loss f_glm1: {}'.format(

(continues on next page)
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PoissonDist.deviance(y_train_p, f_glm1.predict(X_train_p), sample_weight=w_train_p)/
→˓np.sum(w_train_p)
))

print('test loss f_glm1: {}'.format(
PoissonDist.deviance(y_test_p, f_glm1.predict(X_test_p), sample_weight=w_test_p)/

→˓np.sum(w_test_p)))

training loss f_glm1: 0.45704947333555146
test loss f_glm1: 0.45793061314157685

A GLM with canonical link function (Normal - identity, Poisson - log, Gamma - 1/x, Binomial - logit) with an intercept
term has the so called balance property. Neglecting small deviations due to an imperfect fit, on the training sample
the results satisfy the equality: ∑︁

𝑖∈𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑤𝑖𝑦𝑖 =
∑︁

𝑖∈𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑤𝑖�̂�𝑖

As expected, this property holds in our real data:

[7]: # balance property of GLM with canonical link, like log-link for Poisson:
z_train_p.sum(), (f_glm1.predict(X_train_p) * w_train_p).sum()

[7]: (23785, 23785.198509368805)

5.1.4 3. Severity GLM - Gamma distribution

back to Table of Contents

Now, we fit a GLM for the severity with the same features as the frequency model. The severity 𝑦 is the average claim
size. We define:

• 𝑧: total claim amount, single claims cut at 100,000

• 𝑤: number of claims (with positive claim amount!)

• 𝑦 = 𝑧
𝑤 : severity

3.1 Why Gamma distributions

The severity 𝑦 is a positive, real number, 𝑦 ∈ (0,∞). Theoretically, especially for liability claims, one could have
arbitrary large numbers—very unlikely but possible. A very simple distribution for this range is an Exponential distri-
bution, or its generalization, a Gamma distribution 𝑦 ∼ 𝐺𝑎𝑚𝑚𝑎. In the insurance industry, it is well known that the
severity might be skewed by a few very large losses. It’s common to model these tail losses separately so here we cut
out claims larger than 100,000 to focus on modeling small and moderate claims.

[8]: df_plot = (
df.loc[:, ['ClaimAmountCut', 'ClaimNb']]
.query('ClaimNb > 0')
.assign(Severity_Observed = lambda x: x['ClaimAmountCut'] / df['ClaimNb'])

)

df_plot['Severity_Observed'].plot.hist(bins=400, density=True, label='Observed', )

(continues on next page)
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x = np.linspace(0, 1e5, num=400)
plt.plot(x,

scipy.stats.gamma.pdf(x, *scipy.stats.gamma.fit(df_plot['Severity_Observed'],␣
→˓floc=0)),

'r-', label='fitted Gamma')
plt.legend()
plt.title("Severity");
plt.xlim(left=0, right = 1e4);
#plt.xticks(x);

[9]: # Check mean-variance relationship for Gamma: Var[Y] = E[Y]^2 / Exposure
# Estimate Var[Y] and E[Y]
# Plot estimates Var[Y] vs E[Y]^s/Exposure
# Note: We group by VehPower and BonusMalus in order to have different E[Y].

def my_agg(x):
"""See https://stackoverflow.com/q/44635626"""
x_sev = x['Sev']
x_cnb = x['ClaimNb']
n = x_sev.shape[0]
names = {

'Sev_mean': np.average(x_sev, sample_weight=x_cnb),
'Sev_var': 1/(n-1) * np.sum((x_cnb/np.sum(x_cnb)) * (x_sev-np.average(x_sev,␣

→˓sample_weight=x_cnb))**2),
'ClaimNb_sum': x_cnb.sum()

}
return pd.Series(names, index=['Sev_mean', 'Sev_var', 'ClaimNb_sum'])

for col in ['VehPower', 'BonusMalus']:
claims = df.groupby(col)['ClaimNb'].sum()
df_plot = (df.loc[df[col].isin(claims[claims >= 4].index), :]

.query('ClaimNb > 0')

.assign(Sev = lambda x: x['ClaimAmountCut']/x['ClaimNb'])

.groupby(col)
(continues on next page)
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.apply(my_agg)
)

plt.plot(df_plot['Sev_mean'], df_plot['Sev_var'] * df_plot['ClaimNb_sum'], '.',
markersize=12, label='observed')

# fit: mean**p/claims
p = optimize.curve_fit(lambda x, p: np.power(x, p),

df_plot['Sev_mean'].values,
df_plot['Sev_var'] * df_plot['ClaimNb_sum'],
p0 = [2])[0][0]

df_fit = pd.DataFrame({'x': df_plot['Sev_mean'],
'y': np.power(df_plot['Sev_mean'], p)})

df_fit = df_fit.sort_values('x')

plt.plot(df_fit.x, df_fit.y,
'k--', label='fit: Mean**{}'.format(p))

plt.xlabel('Mean of Severity ')
plt.ylabel('Variance of Severity * ClaimNb')
plt.legend()
plt.title('Man-Variance of Claim Severity by {}'.format(col))
plt.show()
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Great! A Gamma distribution seems to be an empirically reasonable assumption for this dataset.

Hint: If Y were normal distributed, one should see a horizontal line, because 𝑉 𝑎𝑟[𝑌 ] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 and the
fit should give 𝑝 ≈ 0.

3.2 Severity GLM with train and test data

We fit a GLM for the severity with the same features as the frequency model. We use the same categorizer as before.

Note:

• We filter out ClaimAmount == 0. The severity problem is to model claim amounts conditional on a claim having
already been submitted. It seems reasonable to treat a claim of zero as equivalent to no claim at all. Additionally,
zero is not included in the open interval (0,∞) support of the Gamma distribution.

• We use ClaimNb as sample weights.

• We use the same split in train and test data such that we can predict the final claim amount on the test set as the
product of our Poisson claim number and Gamma claim severity GLMs.

[10]: idx = df['ClaimAmountCut'].values > 0

z = df['ClaimAmountCut'].values
weight = df['ClaimNb'].values
# y = claims severity
y = np.zeros_like(z) # zeros will never be used
y[idx] = z[idx] / weight[idx]

# we also need to represent train and test as boolean indices
itrain = np.zeros(y.shape, dtype='bool')
itest = np.zeros(y.shape, dtype='bool')
itrain[train] = True
itest[test] = True
# simplify life
itrain = idx & itrain
itest = idx & itest

(continues on next page)
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X_train_g = glm_categorizer.fit_transform(df[predictors].iloc[itrain])
X_test_g = glm_categorizer.transform(df[predictors].iloc[itest])
y_train_g, y_test_g = y[itrain], y[itest]
w_train_g, w_test_g = weight[itrain], weight[itest]
z_train_g, z_test_g = z[itrain], z[itest]

We fit our model with the same parameters before, but of course, this time we use family=gamma.

[11]: s_glm1 = GeneralizedLinearRegressor(family='gamma', alpha_search=True, l1_ratio=1, fit_
→˓intercept=True)
s_glm1.fit(X_train_g, y_train_g, sample_weight=weight[itrain])

pd.DataFrame({'coefficient': np.concatenate(([s_glm1.intercept_], s_glm1.coef_))},
index=['intercept'] + s_glm1.feature_names_).T

[11]: intercept VehBrand__B1 VehBrand__B10 VehBrand__B11 \
coefficient 7.3389 -0.034591 0.040528 0.13116

VehBrand__B12 VehBrand__B13 VehBrand__B14 VehBrand__B2 \
coefficient 0.035838 0.100753 -0.073995 -0.033196

VehBrand__B3 VehBrand__B4 ... VehAge__1 VehAge__2 \
coefficient 0.0 0.049078 ... 0.0 -0.024827

VehPower__4 VehPower__5 VehPower__6 VehPower__7 VehPower__8 \
coefficient -0.009537 -0.089972 0.071376 0.009361 -0.042491

VehPower__9 BonusMalus Density
coefficient 0.051636 0.002365 -0.000001

[1 rows x 60 columns]

Again, we measure performance with the deviance of the distribution. We also compare against the simple arithmetic
mean and include the mean absolute error to help understand the actual scale of our results.

Note: a Gamma distribution is equivalent to a Tweedie distribution with power = 2.

[26]: GammaDist = TweedieDistribution(2)
print('training loss (deviance) s_glm1: {}'.format(

GammaDist.deviance(
y_train_g, s_glm1.predict(X_train_g), sample_weight=w_train_g

)/np.sum(w_train_g)
))
print('training mean absolute error s_glm1: {}'.format(

mean_absolute_error(y_train_g, s_glm1.predict(X_train_g))
))

print('\ntesting loss s_glm1 (deviance): {}'.format(
GammaDist.deviance(

y_test_g, s_glm1.predict(X_test_g), sample_weight=w_test_g
)/np.sum(w_test_g)

))
(continues on next page)
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print('testing mean absolute error s_glm1: {}'.format(
mean_absolute_error(y_test_g, s_glm1.predict(X_test_g))

))

print('\ntesting loss Mean (deviance): {}'.format(
GammaDist.deviance(

y_test_g, np.average(z_train_g, sample_weight=w_train_g)*np.ones_like(z_test_g),␣
→˓sample_weight=w_test_g

)/np.sum(w_test_g)
))
print('testing mean absolute error Mean: {}'.format(

mean_absolute_error(y_test_g, np.average(z_train_g, sample_weight=w_train_g)*np.ones_
→˓like(z_test_g))
))

training loss (deviance) s_glm1: 1.29010461534461
training mean absolute error s_glm1: 1566.1785138646032

testing loss s_glm1 (deviance): 1.2975718597070154
testing mean absolute error s_glm1: 1504.4458958597086

testing loss Mean (deviance): 1.3115309309577132
testing mean absolute error Mean: 1689.205530922944

Even though the deviance improvement seems small, the improvement in mean absolute error is not! (In the insurance
world, this will make a significant difference when aggregated over all claims).

3.3 Combined frequency and severity results

We put together the prediction of frequency and severity to get the predictions of the total claim amount per policy.

[13]: #Put together freq * sev together
print("Total claim amount on train set, observed = {}, predicted = {}".

format(df['ClaimAmountCut'].values[train].sum(),
np.sum(df['Exposure'].values[train] * f_glm1.predict(X_train_p) * s_glm1.

→˓predict(X_train_p)))
)

print("Total claim amount on test set, observed = {}, predicted = {}".
format(df['ClaimAmountCut'].values[test].sum(),

np.sum(df['Exposure'].values[test] * f_glm1.predict(X_test_p) * s_glm1.
→˓predict(X_test_p)))

)

Total claim amount on train set, observed = 44594644.68, predicted = 44549152.42247057
Total claim amount on test set, observed = 4707551.37, predicted = 4946960.354743531
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5.1.5 4. Combined GLM - Tweedie distribution

back to Table of Contents

Finally, to demonstrate an alternate approach to the combined frequency severity model, we show how we can model
pure premium directly using a Tweedie regressor. Any Tweedie distribution with power 𝑝 ∈ (1, 2) is known as com-
pound Poisson Gamma distribution

[14]: weight = df['Exposure'].values
df["PurePremium"] = df["ClaimAmountCut"] / df["Exposure"]
y = df["PurePremium"]

X_train_t = glm_categorizer.fit_transform(df[predictors].iloc[train])
X_test_t = glm_categorizer.transform(df[predictors].iloc[test])
y_train_t, y_test_t = y.iloc[train], y.iloc[test]
w_train_t, w_test_t = weight[train], weight[test]

For now, we just arbitrarily select 1.5 as the power parameter for our Tweedie model. However for a better fit we could
include the power parameter in the optimization/fitting process, possibly via a simple grid search.

Note: notice how we pass a TweedieDistribution object in directly for the family parameter. While glum supports
strings for common families, it is also possible to pass in a glum distribution directly.

[15]: TweedieDist = TweedieDistribution(1.5)
t_glm1 = GeneralizedLinearRegressor(family=TweedieDist, alpha_search=True, l1_ratio=1,␣
→˓fit_intercept=True)
t_glm1.fit(X_train_t, y_train_t, sample_weight=w_train_t)

pd.DataFrame({'coefficient': np.concatenate(([t_glm1.intercept_], t_glm1.coef_))},
index=['intercept'] + t_glm1.feature_names_).T

[15]: intercept VehBrand__B1 VehBrand__B10 VehBrand__B11 \
coefficient 2.88667 -0.064157 0.0 0.231868

VehBrand__B12 VehBrand__B13 VehBrand__B14 VehBrand__B2 \
coefficient -0.211061 0.054979 -0.270346 -0.071453

VehBrand__B3 VehBrand__B4 ... VehAge__1 VehAge__2 \
coefficient 0.00291 0.059324 ... 0.008117 -0.229906

VehPower__4 VehPower__5 VehPower__6 VehPower__7 VehPower__8 \
coefficient -0.111796 -0.123388 0.060757 0.005179 -0.021832

VehPower__9 BonusMalus Density
coefficient 0.208158 0.032508 0.000002

[1 rows x 60 columns]

Again, we use the distribution’s deviance to measure model performance

[16]: print('training loss s_glm1: {}'.format(
TweedieDist.deviance(y_train_t, t_glm1.predict(X_train_t), sample_weight=w_train_t)/

→˓np.sum(w_train_t)))

(continues on next page)
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print('testing loss s_glm1: {}'.format(
TweedieDist.deviance(y_test_t, t_glm1.predict(X_test_t), sample_weight=w_test_t)/np.

→˓sum(w_test_t)))

training loss s_glm1: 73.91371104577475
testing loss s_glm1: 72.35318912371723

Finally, we again show the total predicted vs. true claim amount on the training and test set

[17]: #Put together freq * sev together
print("Total claim amount on train set, observed = {}, predicted = {}".

format(df['ClaimAmountCut'].values[train].sum(),
np.sum(df['Exposure'].values[train] * t_glm1.predict(X_train_p)))

)

print("Total claim amount on test set, observed = {}, predicted = {}".
format(df['ClaimAmountCut'].values[test].sum(),

np.sum(df['Exposure'].values[test] * t_glm1.predict(X_test_p)))
)

Total claim amount on train set, observed = 44594644.68, predicted = 45027861.66007367
Total claim amount on test set, observed = 4707551.37, predicted = 4999381.03386664

In terms of the combined proximity to the true total claim amounts, the frequency severity model performed a bit better
than Tweedie model. However, both approaches ultimately prove to be effective.

5.2 High Dimensional Fixed Effects with Rossman Sales Data

Intro

This tutorial demonstrates how to create models with high dimensional fixed effects using glum. Using tabmat, we
can pass categorical variables with a large range of values. glum and tabmat will handle the creation of the one-hot-
encoded design matrix.

In some real-world problems, we have used millions of categories. This would be impossible with a dense matrix.
General-purpose sparse matrices like compressed sparse row (CSR) matrices help but still leave a lot on the table. For
a categorical matrix, we know that each row has only a single non-zero value and that value is 1. These optimizations
are implemented in tabmat.CategoricalMatrix.

Background

For this tutorial, we will be predicting sales for the European drug store chain Rossman. Specifically, we are tasked
with predicting daily sales for future dates. Ideally, we want a model that can capture the many factors that influence
stores sales – promotions, competition, school, holidays, seasonality, etc. As a baseline, we will start with a simple
model that only uses a few basic predictors. Then, we will fit a model with a large number of fixed effects. For both
models, we will use OLS with L2 regularization.

We will use a gamma distribution for our model. This choice is motivated by two main factors. First, our target variable,
sales, is a positive real number, which matches the support of the gamma distribution. Second, it is expected that factors
influencing sales are multiplicative rather than additive, which is better captured with a gamma regression than say,
OLS.

Note: a few parts of this tutorial utilize local helper functions outside this notebook. If you wish to run the notebook
on your own, you can find the rest of the code here.
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5.2.1 Table of Contents

• 1. Data Loading and Feature Engineering

• 2. Fit Baseline GLM

• 3. GLM with High Dimensional Fixed Effects

• 4. Plot Results

[1]: import os
from pathlib import Path

import altair as alt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from dask_ml.impute import SimpleImputer
from dask_ml.preprocessing import Categorizer
from glum import GeneralizedLinearRegressor
from sklearn.pipeline import Pipeline

from feature_engineering import apply_all_transformations
from process_data import load_test, load_train, process_data

import sys
sys.path.append("../")
from metrics import root_mean_squared_percentage_error

pd.set_option("display.float_format", lambda x: "%.3f" % x)
pd.set_option('display.max_columns', None)
alt.data_transformers.enable("json") # to allow for large plots

[1]: DataTransformerRegistry.enable('json')

5.2.2 1. Data loading and feature engineering

back to table of contents

We start by loading in the raw data. If you have not yet processed the raw data, it will be done below. (Initial processing
consists of some basic cleaning and renaming of columns.

Note: if you wish to run this notebook on your own, and have not done so already, please download the data from the
Rossman Kaggle Challenge. This tutorial expects that it in a folder named “raw_data” under the same directory as the
notebook.
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1.1 Load

[2]: if not all(Path(p).exists() for p in ["raw_data/train.csv", "raw_data/test.csv", "raw_
→˓data/store.csv"]):
raise Exception("Please download raw data into 'raw_data' folder")

if not all(Path(p).exists() for p in ["processed_data/train.parquet", "processed_data/
→˓test.parquet"]):

"Processed data not found. Processing data from raw data..."
process_data()
"Done"

df = load_train().sort_values(["store", "date"])
df = df.iloc[:int(.1*len(df))]
df.head()

[2]: store day_of_week date sales customers open promo \
1016095 1 2 2013-01-01 0 0 False 0
1014980 1 3 2013-01-02 5530 668 True 0
1013865 1 4 2013-01-03 4327 578 True 0
1012750 1 5 2013-01-04 4486 619 True 0
1011635 1 6 2013-01-05 4997 635 True 0

state_holiday school_holiday year month store_type assortment \
1016095 a 1 2013 1 c a
1014980 0 1 2013 1 c a
1013865 0 1 2013 1 c a
1012750 0 1 2013 1 c a
1011635 0 1 2013 1 c a

competition_distance competition_open_since_month \
1016095 1270.000 9.000
1014980 1270.000 9.000
1013865 1270.000 9.000
1012750 1270.000 9.000
1011635 1270.000 9.000

competition_open_since_year promo2 promo2_since_week \
1016095 2008.000 0 NaN
1014980 2008.000 0 NaN
1013865 2008.000 0 NaN
1012750 2008.000 0 NaN
1011635 2008.000 0 NaN

promo2_since_year promo_interval
1016095 NaN None
1014980 NaN None
1013865 NaN None
1012750 NaN None
1011635 NaN None
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1.2 Feature engineering

As mentioned earlier, we want our model to incorporate many factors that could influence store sales. We create a
number of fixed effects to capture this information. These include fixed effects for:

• A certain number days before a school or state holiday

• A certain number days after a school or state holiday

• A certain number days before a promo

• A certain number days after a promo

• A certain number days before the store is open or closed

• A certain number days after the store is open or closed

• Each month for each store

• Each year for each store

• Each day of the week for each store

We also do several other transformations like computing the z score to eliminate outliers (in the next step)

[3]: df = apply_all_transformations(df)
df.head()

[3]: store day_of_week date sales customers open promo \
1016095 1 2 2013-01-01 0 0 False 0
1014980 1 3 2013-01-02 5530 668 True 0
1013865 1 4 2013-01-03 4327 578 True 0
1012750 1 5 2013-01-04 4486 619 True 0
1011635 1 6 2013-01-05 4997 635 True 0

state_holiday school_holiday year month store_type assortment \
1016095 a 1 2013 1 c a
1014980 0 1 2013 1 c a
1013865 0 1 2013 1 c a
1012750 0 1 2013 1 c a
1011635 0 1 2013 1 c a

competition_distance competition_open_since_month \
1016095 1270.000 9.000
1014980 1270.000 9.000
1013865 1270.000 9.000
1012750 1270.000 9.000
1011635 1270.000 9.000

competition_open_since_year promo2 promo2_since_week \
1016095 2008.000 0 NaN
1014980 2008.000 0 NaN
1013865 2008.000 0 NaN
1012750 2008.000 0 NaN
1011635 2008.000 0 NaN

promo2_since_year promo_interval age_quantile competition_open \
1016095 NaN None -1 1.000
1014980 NaN None -1 1.000

(continues on next page)
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1013865 NaN None -1 1.000
1012750 NaN None -1 1.000
1011635 NaN None -1 1.000

count open_lag_1 open_lag_2 open_lag_3 open_lead_1 open_lead_2 \
1016095 0 1.0 1.0 1.0 True True
1014980 1 False 1.0 1.0 True True
1013865 2 True False 1.0 True True
1012750 3 True True False True False
1011635 4 True True True False True

open_lead_3 promo_lag_1 promo_lag_2 promo_lag_3 promo_lead_1 \
1016095 True 0.000 0.000 0.000 0.000
1014980 True 0.000 0.000 0.000 0.000
1013865 False 0.000 0.000 0.000 0.000
1012750 True 0.000 0.000 0.000 0.000
1011635 True 0.000 0.000 0.000 0.000

promo_lead_2 promo_lead_3 school_holiday_lag_1 \
1016095 0.000 0.000 0.000
1014980 0.000 0.000 1.000
1013865 0.000 0.000 1.000
1012750 0.000 1.000 1.000
1011635 1.000 1.000 1.000

school_holiday_lag_2 school_holiday_lag_3 school_holiday_lead_1 \
1016095 0.000 0.000 1.000
1014980 0.000 0.000 1.000
1013865 1.000 0.000 1.000
1012750 1.000 1.000 1.000
1011635 1.000 1.000 1.000

school_holiday_lead_2 school_holiday_lead_3 state_holiday_lag_1 \
1016095 1.000 1.000 0
1014980 1.000 1.000 a
1013865 1.000 1.000 0
1012750 1.000 1.000 0
1011635 1.000 1.000 0

state_holiday_lag_2 state_holiday_lag_3 state_holiday_lead_1 \
1016095 0 0 0
1014980 0 0 0
1013865 a 0 0
1012750 0 a 0
1011635 0 0 0

state_holiday_lead_2 state_holiday_lead_3 store_day_of_week \
1016095 0 0 1_2
1014980 0 0 1_3
1013865 0 0 1_4
1012750 0 0 1_5
1011635 0 0 1_6

(continues on next page)
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store_month store_school_holiday store_state_holiday store_year \
1016095 1_1 1_1 1_True 1_2013
1014980 1_1 1_1 1_False 1_2013
1013865 1_1 1_1 1_False 1_2013
1012750 1_1 1_1 1_False 1_2013
1011635 1_1 1_1 1_False 1_2013

zscore
1016095 NaN
1014980 NaN
1013865 NaN
1012750 NaN
1011635 NaN

1.3 Train vs. validation selection

Lastly, we split our data into training and validation sets. Kaggle provides a test set for the Rossman challenge, but
it does not directly include outcome data (sales), so we do not use it for our tutorial. Instead, we simulate predicting
future sales by taking the last 5 months of our training data as our validation set.

[4]: validation_window = [pd.to_datetime("2015-03-15"), pd.to_datetime("2015-07-31")]
select_train = (df["sales"].gt(0) & df["date"].lt(validation_window[0]) & df["zscore"].
→˓abs().lt(5)).to_numpy()

select_val = (
df["sales"].gt(0)
& df["date"].ge(validation_window[0])
& df["date"].lt(validation_window[1])

).to_numpy()

(select_train.sum(), select_val.sum())

[4]: (57876, 12502)

5.2.3 2. Fit baseline GLM

back to table of contents

We start with a simple model that uses only year, month, day of the week, and store as predictors. Even with these
variables alone, we should still be able to capture a lot of valuable information. Year can capture overall sales trends,
month can capture seasonality, week day can capture the variation in sales across the week, and store can capture
locality. We will treat these all as categorical variables.

With the GeneralizedLinearRegressor() class, we can pass in pandas.Categorical variables directly without
having to encode them ourselves. This is convenient, especially when we start adding more fixed effects. But it is very
important that the categories are aligned between calls to fit and predict. One way of achieving this alignment is with
a dask_ml.preprocessing.Categorizer. Note, however, that the Categorizer class fails to enforce category
alignment if the input column is already a categorical data type.

You can reference the pandas documentation on Categoricals to learn more about how these data types work.

36 Chapter 5. Tutorials

https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html


glum

[5]: baseline_features = ["year", "month", "day_of_week", "store"]
baseline_categorizer = Categorizer(columns=baseline_features)
baseline_glm = GeneralizedLinearRegressor(

family="gamma",
scale_predictors=True,
l1_ratio=0.0,
alphas=1e-1,

)

Fit the model making sure to process the data frame with the Categorizer first and inspect the coefficients.

[6]: baseline_glm.fit(
baseline_categorizer.fit_transform(df[select_train][baseline_features]),
df.loc[select_train, "sales"]

)

pd.DataFrame(
{'coefficient': np.concatenate(([baseline_glm.intercept_], baseline_glm.coef_))},
index=['intercept'] + baseline_glm.feature_names_

).T

[6]: intercept year__2013 year__2014 year__2015 month__1 \
coefficient 8.781 -0.010 0.008 0.003 -0.015

month__2 month__3 month__4 month__5 month__6 month__7 \
coefficient -0.021 -0.019 0.020 0.008 -0.006 -0.002

month__8 month__9 month__10 month__11 month__12 \
coefficient -0.023 -0.034 -0.030 0.022 0.116

day_of_week__1 day_of_week__2 day_of_week__3 day_of_week__4 \
coefficient 0.098 0.010 -0.014 -0.014

day_of_week__5 day_of_week__6 day_of_week__7 store__1 \
coefficient 0.017 -0.100 0.285 -0.156

store__2 store__3 store__4 store__5 store__6 store__7 \
coefficient -0.136 0.024 0.202 -0.161 -0.087 0.158

store__8 store__9 store__10 store__11 store__12 store__13 \
coefficient -0.094 0.002 -0.081 0.110 0.074 -0.126

store__14 store__15 store__16 store__17 store__18 store__19 \
coefficient -0.088 0.009 0.082 -0.020 0.001 -0.008

store__20 store__21 store__22 store__23 store__24 store__25 \
coefficient 0.085 -0.088 -0.178 -0.088 0.183 0.274

store__26 store__27 store__28 store__29 store__30 store__31 \
coefficient 0.008 0.192 -0.098 0.059 -0.101 -0.051

store__32 store__33 store__34 store__35 store__36 store__37 \
coefficient -0.225 0.125 0.102 0.198 0.185 0.046

(continues on next page)
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store__38 store__39 store__40 store__41 store__42 store__43 \
coefficient -0.048 -0.153 -0.128 -0.085 0.234 0.017

store__44 store__45 store__46 store__47 store__48 store__49 \
coefficient -0.086 -0.101 -0.094 0.039 -0.243 0.058

store__50 store__51 store__52 store__53 store__54 store__55 \
coefficient -0.208 0.012 0.079 -0.109 0.099 -0.180

store__56 store__57 store__58 store__59 store__60 store__61 \
coefficient 0.047 0.259 -0.017 -0.091 0.102 -0.149

store__62 store__63 store__64 store__65 store__66 store__67 \
coefficient -0.009 0.034 0.251 -0.122 -0.035 0.086

store__68 store__69 store__70 store__71 store__72 store__73 \
coefficient 0.081 0.190 0.002 0.171 -0.189 -0.173

store__74 store__75 store__76 store__77 store__78 store__79 \
coefficient -0.023 -0.038 0.172 0.077 -0.266 -0.091

store__80 store__81 store__82 store__83 store__84 store__85 \
coefficient 0.077 0.038 0.163 -0.248 0.369 0.019

store__86 store__87 store__88 store__89 store__90 store__91 \
coefficient -0.155 -0.060 -0.048 -0.047 0.130 -0.059

store__92 store__93 store__94 store__95 store__96 store__97 \
coefficient -0.047 -0.052 0.038 0.084 -0.121 0.007

store__98 store__99 store__100 store__101 store__102 \
coefficient -0.119 -0.111 0.108 0.069 0.038

store__103 store__104 store__105 store__106 store__107 \
coefficient -0.171 0.233 -0.175 0.136 0.058

store__108 store__109 store__110 store__111 store__112
coefficient 0.284 -0.006 -0.174 0.018 -0.039

And let’s predict for our test set with the caveat that we will predict 0 for days when the stores are closed!

[7]: df.loc[lambda x: x["open"], "predicted_sales_baseline"] = baseline_glm.predict(
baseline_categorizer.fit_transform(df.loc[lambda x: x["open"]][baseline_features])

)

df["predicted_sales_baseline"] = df["predicted_sales_baseline"].fillna(0)
df["predicted_sales_baseline"] = df["predicted_sales_baseline"]

We use root mean squared percentage error (RMSPE) as our performance metric. (Useful for thinking about error
relative to total sales of each store).
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[8]: train_err = root_mean_squared_percentage_error(
df.loc[select_train, "sales"], df.loc[select_train, "predicted_sales_baseline"]

)
val_err = root_mean_squared_percentage_error(

df.loc[select_val, "sales"], df.loc[select_val, "predicted_sales_baseline"]
)
print(f'Training Error: {round(train_err, 2)}%')
print(f'Validation Error: {round(val_err, 2)}%')

Training Error: 27.96%
Validation Error: 29.57%

The results aren’t bad for a start, but we can do better :)

5.2.4 3. GLM with high dimensional fixed effects

back to table of contents

Now, we repeat a similar process to above, but, this time, we take advantage of the full range of categoricals we created
in our data transformation step. Since we will create a very large number of fixed effects, we may run into cases where
our validation data has categorical values not seen in our training data. In these cases, Dask-ML’s Categorizer will
output null values when transforming the validation columns to the categoricals that were created on the training set.
To fix this, we add Dask-ML’s SimpleImputer to our pipeline.

[9]: highdim_features = [
"age_quantile",
"competition_open",
"open_lag_1",
"open_lag_2",
"open_lag_3",
"open_lead_1",
"open_lead_2",
"open_lead_3",
"promo_lag_1",
"promo_lag_2",
"promo_lag_3",
"promo_lead_1",
"promo_lead_2",
"promo_lead_3",
"promo",
"school_holiday_lag_1",
"school_holiday_lag_2",
"school_holiday_lag_3",
"school_holiday_lead_1",
"school_holiday_lead_2",
"school_holiday_lead_3",
"school_holiday",
"state_holiday_lag_1",
"state_holiday_lag_2",
"state_holiday_lag_3",
"state_holiday_lead_1",
"state_holiday_lead_2",
"state_holiday_lead_3",

(continues on next page)
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"state_holiday",
"store_day_of_week",
"store_month",
"store_school_holiday",
"store_state_holiday",
"store_year",

]
highdim_categorizer = Pipeline([

("categorize", Categorizer(columns=highdim_features)),
("impute", SimpleImputer(strategy="most_frequent"))

])
highdim_glm = GeneralizedLinearRegressor(

family="gamma",
scale_predictors=True,
l1_ratio=0.0, # only ridge
alpha=1e-1,

)

For reference, we output the total number of predictors after fitting the model. We can see that the number getting a bit
larger, so we don’t print out the coefficients this time.

[10]: highdim_glm.fit(
highdim_categorizer.fit_transform(df[select_train][highdim_features]),
df.loc[select_train, "sales"]

)

print(f"Number of predictors: {len(highdim_glm.feature_names_)}")

Number of predictors: 2771

[11]: df.loc[lambda x: x["open"], "predicted_sales_highdim"] = highdim_glm.predict(
highdim_categorizer.transform(df.loc[lambda x: x["open"]][highdim_features]),

)

df["predicted_sales_highdim"] = df["predicted_sales_highdim"].fillna(0)
df["predicted_sales_highdim"] = df["predicted_sales_highdim"]

train_err = root_mean_squared_percentage_error(
df.loc[select_train, "sales"], df.loc[select_train, "predicted_sales_highdim"]

)
val_err = root_mean_squared_percentage_error(

df.loc[select_val, "sales"], df.loc[select_val, "predicted_sales_highdim"]
)
print(f'Training Error: {round(train_err, 2)}%')
print(f'Validation Error: {round(val_err, 2)}%')

Training Error: 12.54%
Validation Error: 13.28%

From just the RMSPE, we can see a clear improvement from our baseline model.
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5.2.5 4. Plot results

back to table of contents

Finally, to get a better look at our results, we make some plots.

[12]: sales_cols = ["sales", "predicted_sales_highdim", "predicted_sales_baseline"]

First, we plot true sales and the sales predictions from each model aggregated over month:

[13]: _, axs = plt.subplots(2, 1, figsize=(16, 16))

for i, select in enumerate([select_train, select_val]):
ax = axs[i]
df_plot_date = df[select].groupby(

["year", "month"]
).agg("sum")[sales_cols].reset_index()

year_month_date = df_plot_date['month'].map(str)+ '-' + df_plot_date['year'].map(str)
df_plot_date['year_month'] = pd.to_datetime(year_month_date, format='%m-%Y').dt.

→˓strftime('%m-%Y')
df_plot_date.drop(columns= ["year", "month"], inplace=True)

df_plot_date.plot(x="year_month", ax=ax)
ax.set_xticks(range(len(df_plot_date)))
ax.set_xticklabels(df_plot_date.year_month, rotation=45)
ax.set_xlabel("date")
ax.set_ylabel("Total sales")
ax.grid(True, linestyle='-.')

axs[0].set_title("Training Results: Total Sales per Month")
axs[1].set_title("Validation Results: Total Sales per Month")
plt.show()
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We can also look at aggregate sales for a subset of stores. We select the first 20 stores and plot in order of increasing
sales.

[14]: _, axs = plt.subplots(2, 1, figsize=(14, 12))
for i, select in enumerate([select_train, select_val]):

ax = axs[i]
df_plot_store = df[select].groupby(

["store"]
).agg("sum")[sales_cols].reset_index()[:20].sort_values(by="sales")

df_plot_store.plot.bar(x="store", ax=ax)
ax.set_xlabel("Store")

(continues on next page)
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ax.set_ylabel("Total sales")

axs[0].set_title("Training Results: Total Sales by Store")
axs[1].set_title("Validation Results: Total Sales by Store")
plt.show()

We can see that the high dimensional model is much better at capturing the variation between months and individual
stores!
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5.3 Tikhonov Regularization Tutorial: Seattle-Tacoma Housing Data

Intro

This tutorial shows how to use variable 𝐿2 regularization with glum. The P2 parameter of the
GeneralizedLinearRegressor class allows you to directly set the 𝐿2 penalty matrix 𝑤𝑇𝑃2𝑤. If a 2d array
is passed for the P2 parameter, it is used directly, while if you pass a 1d array as P2 it will be interpreted as the diagonal
of 𝑃2 and all other entries will be assumed to be zero.

Note: Variable 𝐿1 regularization is also available by passing an array with length n_features to the P1 parameter.

Background

For this tutorial, we will model the selling price of homes in King’s County, Washington (Seattle-Tacoma Metro area)
between May 2014 and May 2015. However, in order to demonstrate a Tikhonov regularization-based spatial smoothing
technique, we will focus on a small, skewed data sample from that region in our training data. Specifically, we will show
that when we have (a) a fixed effect for each postal code region and (b) only a select number of training observations in a
certain region, we can improve the predictive power of our model by regularizing the difference between the coefficients
of neighboring regions. While we are constructing a somewhat artificial example here in order to demonstrate the spatial
smoothing technique, we have found similar techniques to be applicable to real-world problems.

We will use a gamma distribution for our model. This choice is motivated by two main factors. First, our target variable,
home price, is a positive real number, which matches the support of the gamma distribution. Second, it is expected
that factors influencing housing prices are multiplicative rather than additive, which is better captured with a gamma
regression than say, OLS.

Note: a few parts of this tutorial utilize local helper functions outside this notebook. If you wish to run the notebook
on your own, you can find the rest of the code here.

5.3.1 Table of Contents

• 1. Load and Prepare Datasets from Openml.org

• 2. Visualize Geographic Data with GIS Open Data

• 3. Feature Selection and Transformation

• 4. Create P matrix

• 5. Fit Models

[1]: import itertools

import geopandas as geopd
import libpysal
import matplotlib.pyplot as plt
import numpy as np
import openml
import pandas as pd

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from glum import GeneralizedLinearRegressor

import sys
sys.path.append("../")

(continues on next page)
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from metrics import root_mean_squared_percentage_error

import warnings
warnings.filterwarnings("ignore", message="The weights matrix is not fully connected")

import data_prep
import maps

5.3.2 1. Load and prepare datasets from Openml

back to table of contents

1.1. Download and transform

The main dataset is downloaded from OpenML. You can find the main page for the dataset here. It is also available
through Kaggle here.

As part of data preparation, we also do some transformations to the data:

• We remove some outliers (homes over 1.5 million and under 100k).

• Since we want to focus on geographic features, we also remove a handful of the other features.

Below, you can see some example rows from the dataset.

[2]: df = data_prep.download_and_transform()
df.head()

[2]: bedrooms bathrooms sqft_living floors waterfront view condition \
0 3 1.00 1180 1.0 0 0 3
1 3 2.25 2570 2.0 0 0 3
2 2 1.00 770 1.0 0 0 3
3 4 3.00 1960 1.0 0 0 5
4 3 2.00 1680 1.0 0 0 3

sqft_basement yr_built zipcode price
0 0 1955 98178 221900.0
1 400 1951 98125 538000.0
2 0 1933 98028 180000.0
3 910 1965 98136 604000.0
4 0 1987 98074 510000.0

5.3.3 2. Visualize geographic data with GIS open

back to table of contents

To help visualize the geographic data, we use geopandas and GIS Open Data to display price information on the King’s
county map. You can get the map data here.

To show the relatioship between home price and geography, we merge the map data with our sales data and use a heat
map to plot mean home sale price for each postal code region.
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[3]: maps.read_shapefile("Zip_Codes/Zip_Codes.shp")

[3]: OBJECTID ZIP ZIPCODE COUNTY SHAPE_Leng SHAPE_Area \
0 1 98031 98031 033 117508.211718 2.280129e+08
1 2 98032 98032 033 166737.664791 4.826754e+08
2 3 98033 98033 033 101363.840369 2.566747e+08
3 4 98034 98034 033 98550.452509 2.725072e+08
4 5 98030 98030 033 94351.264837 2.000954e+08
.. ... ... ... ... ... ...
199 200 98402 98402 053 30734.178112 2.612224e+07
200 201 98403 98403 053 23495.038425 2.890938e+07
201 202 98404 98404 053 61572.154365 2.160645e+08
202 203 98405 98405 053 50261.100559 1.193118e+08
203 204 98406 98406 053 74118.972418 1.088373e+08

geometry
0 POLYGON ((-122.2184228967409 47.4375036485968,...
1 (POLYGON ((-122.2418694980486 47.4412158004961...
2 POLYGON ((-122.2057111926017 47.65169738162997...
3 POLYGON ((-122.1755100327681 47.73706057280546...
4 POLYGON ((-122.1674637459728 47.38548925033355...
.. ...
199 POLYGON ((-122.4427945843513 47.2647926142345,...
200 POLYGON ((-122.4438167281511 47.26617469660845...
201 POLYGON ((-122.3889999141967 47.23495303304902...
202 POLYGON ((-122.4409198889526 47.23639133730699...
203 (POLYGON ((-122.5212509005256 47.2712095490982...

[204 rows x 7 columns]

[4]: df_shapefile = maps.read_shapefile("Zip_Codes/Zip_Codes.shp")
df_map = maps.create_kings_county_map_df(df, df_shapefile)

fix, ax = plt.subplots(figsize=(25, 25))
maps.plot_heatmap(df=df_map, label_col="ZIP", data_col="price", ax=ax)
ax.set_title("Heatmap of Mean Price per Postal Region", fontsize=24)
plt.show()
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We can see a clear relationship between postal code and home price. Seattle (98112, 98102, etc.) and the Belle-
vue/Mercer/Medina suburbs (98039, 98004, 98040) have the highest prices. As you get further from the city, the prices
start to drop.
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5.3.4 3. Feature selection and transformation

back to table of contents

3.1 Feature selection and one hot encoding

Since we want to focus on geographic data, we drop a number of columns below. We keep a handful of columns so
that we can still create a reasonable model.

We then create a fixed effect for each of the postal code regions. We add the encoded postcode columns in numeric
order to help us maintain the proper order of columns while building and training the model.

[5]: sorted_zips = sorted(list(df["zipcode"].unique()))
one_hot = pd.get_dummies(df["zipcode"], dtype=float)
one_hot = one_hot[sorted_zips]
df = df.drop('zipcode', axis=1)
df = one_hot.join(df)
df.head()

[5]: 98001 98002 98003 98004 98005 98006 98007 98008 98010 98011 ... \
0 0 0 0 0 0 0 0 0 0 0 ...
1 0 0 0 0 0 0 0 0 0 0 ...
2 0 0 0 0 0 0 0 0 0 0 ...
3 0 0 0 0 0 0 0 0 0 0 ...
4 0 0 0 0 0 0 0 0 0 0 ...

bedrooms bathrooms sqft_living floors waterfront view condition \
0 3 1.00 1180 1.0 0 0 3
1 3 2.25 2570 2.0 0 0 3
2 2 1.00 770 1.0 0 0 3
3 4 3.00 1960 1.0 0 0 5
4 3 2.00 1680 1.0 0 0 3

sqft_basement yr_built price
0 0 1955 221900.0
1 400 1951 538000.0
2 0 1933 180000.0
3 910 1965 604000.0
4 0 1987 510000.0

[5 rows x 80 columns]

3.2 Test train split

As we mentioned in the introduction, we want to focus on modeling the selling price in a specific region while only
using a very small, skewed data sample from that region in our training data. This scenario could arise if say, our task
was to predict the sales prices for homes in Enumclaw (large region with zip code 98022 in the southeast corner of the
map), but the only data we had from there was from a small luxury realtor.

To mimic this, instead creating a random split between our training and test data, we will intentionally create a highly
skewed sample. For our test set, we will take all of the home sales in Enumclaw, except for the 15 highest priced homes.

Finally, we standardize our predictors.

48 Chapter 5. Tutorials



glum

[6]: predictors = [c for c in df.columns if c != "price"]

test_region = "98022"
df_train = df[df[test_region] == 0]
df_test = df[df[test_region] == 1].sort_values(by="price", ascending=False)

test_to_train = df_test[:15]

df_train = pd.concat([df_train, test_to_train])
df_test = df_test.drop(test_to_train.index)

X_train = df_train[predictors]
y_train = df_train["price"]
X_test = df_test[predictors]
y_test = df_test["price"]

scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

5.3.5 4. Creating the penalty matrix

back to table of contents

To smooth the coefficients for neighboring regions, we will create a penalty matrix 𝑃 such that we penalize the squared
difference in coefficient values for neighbouring regions, e.g. for 98022 and 98045. For example, if 98022 and 98045
were the only region in question, we would need a 2× 2 matrix 𝑃 such that:

(︀
𝛽98022, 𝛽98045

)︀
𝑃

(︂
𝛽98022

𝛽98045

)︂
= (𝛽98022 − 𝛽98045)

2

In this example, we would get this result with 𝑃 =

(︂
1 −1
−1 1

)︂
.

Since we have 72 postal code regions, it would be rather annoying to construct this matrix by hand. Luckily, there are
libraries that exist for this. We use pysal’s pysal.lib.weights.Queen to retrieve a neighbor’s matrix from our map data.
The construction of the penalty matrix is rather straightforward once we have this information.

We leave the non-geographic features unregularized (all zeros in the 𝑃 matrix).

[7]: # format is {zip1: {neighbord1: 1, neighbor2: 1, ...}}
neighbor_matrix = libpysal.weights.Queen.from_dataframe(df_map, ids="ZIP")

n_features = X_train.shape[1]
P2 = np.zeros((n_features, n_features))

zip2index = dict(zip(sorted_zips, range(len(sorted_zips))))
for zip1 in sorted_zips:

for zip2 in neighbor_matrix[zip1].keys():
if zip1 in zip2index and zip2 in zip2index: # ignore regions w/o data

if zip2index[zip1] < zip2index[zip2]: # don't repeat if already saw neighbor␣
→˓pair in earlier iteration

P2[zip2index[zip1], zip2index[zip1]] += 1
(continues on next page)
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P2[zip2index[zip2], zip2index[zip2]] += 1
P2[zip2index[zip1], zip2index[zip2]] -= 1
P2[zip2index[zip2], zip2index[zip1]] -= 1

P2

[7]: array([[ 3., -1., -1., ..., 0., 0., 0.],
[-1., 4., 0., ..., 0., 0., 0.],
[-1., 0., 4., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]])

5.3.6 5. Fit models

back to table of contents

Now, we will fit several L2 regularized OLS models using different levels of regularization. All will use the penalty
matrix defined above, but the alpha parameter, the constant that multiplies the penalty terms and thus determines the
regularization strength, will vary.

For each model, we will measure test performance using root mean squared percentage error (RMSPE), so that we can
get a relaitve result. We will also plot a heatmat of the coefficient values over the regions.

Note: alpha=1e-12 is effectively no regularization. But we can’t set alpha to zero because the unregularized problem
has co-linear columns, resulting in a singular design matrix.

[8]: fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 20))
for i, alpha in enumerate([1e-12, 1e-1, 1, 10]):

glm = GeneralizedLinearRegressor(family='gamma', alpha=alpha, P2=P2, fit_
→˓intercept=True)

glm.fit(X_train, y_train)
y_test_hat = glm.predict(X_test)

coeffs = pd.DataFrame({'coefficient': np.concatenate(([glm.intercept_], glm.coef_))},
→˓ ["intercept"]+predictors)

print(f"alpha={alpha}")
print(f"Test region coefficient: {coeffs.loc[test_region].values[0]}")
print(f"Test RMSPE: {root_mean_squared_percentage_error(y_test_hat, y_test)}\n")

df_map_coeffs = df_map.merge(
coeffs.loc[sorted_zips],
left_on="ZIP",
right_index=True,
how="outer"

)

ax = axs[i//2, i%2]
df_map_coeffs["annotation"] = df_map_coeffs["ZIP"].apply(lambda x: "" if x!=test_

→˓region else x)
maps.plot_heatmap(

(continues on next page)
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(continued from previous page)

df=df_map_coeffs,
label_col="annotation",
data_col="coefficient",
ax=ax,
vmin=-0.015,
vmax=0.025

)
ax.set_title(f"alpha={alpha}")

plt.show()

alpha=1e-12
Test region coefficient: 0.0010920106922960072
Test RMSPE: 72.65620542354644

alpha=0.1
Test region coefficient: -0.0036087215513505183
Test RMSPE: 43.926082004444204

alpha=1
Test region coefficient: -0.01041392075707663
Test RMSPE: 19.51113178158937

alpha=10
Test region coefficient: -0.0033476740903954213
Test RMSPE: 44.59786775358339
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alpha=1 seems to recover the best results. Remember that our test dataset is just a small subset of the data in region
98022 and that the training data is skewed towards high sales prices. For alpha less than 1, we can see that the 98022
region coefficient is still much greater than its neighbors coefficients, which we can see is not accurate if we refer back
to map we produced based on the raw data. For higher alpha levels, we start to see poor predictions resulting from
regional coefficients that are too smooth between adjacent regions.

A test RMSPE of 19.5% is a surprisingly good result considering that we only had 10 highly skewed observations from
our test region in our training data and is far better than the RMSPE of 67.5% from the unregularized case.
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CHAPTER

SIX

CONTRIBUTING AND DEVELOPMENT

Hello! And thanks for exploring glum more deeply. Please see the issue tracker and pull requests tabs on Github for
information about what is currently happening. Feel free to post an issue if you’d like to get involved in development
and don’t really know where to start – we can give some advice.

We welcome contributions of any kind!

• New features

• Feature requests

• Bug reports

• Documentation

• Tests

• Questions

6.1 Pull request process

• Before working on a non-trivial PR, please first discuss the change you wish to make via issue, Slack, email or
any other method with the owners of this repository. This is meant to prevent spending time on a feature that
will not be merged.

• Please make sure that a new feature comes with adequate tests. If these require data, please check if any of our
existing test data sets fits the bill.

• Please make sure that all functions come with proper docstrings. If you do extensive work on docstrings, please
check if the Sphinx documentation renders them correctly. ReadTheDocs builds on every commit to an open pull
request. You can see whether the documentation has successfully built in the “checks” section of the PR. Once
the build finishes, your documentation should be accessible by clicking the “details” link next to the check in the
GitHub interface and will appear at a URL like: https://glum--###.org.readthedocs.build/en/###/
where ### is the number of your PR.

• Please make sure you have our pre-commit hooks installed.

• If you fix a bug, please consider first contributing a test that _fails_ because of the bug and then adding the fix
as a separate commit, so that the CI system picks it up.

• Please add an entry to the change log and increment the version number according to the type of change. We use
semantic versioning. Update the major if you break the public API. Update the minor if you add new function-
ality. Update the patch if you fixed a bug. All changes that have not been released are collected under the date
UNRELEASED.

53



glum

6.2 Releases

• We make package releases infrequently, but usually any time a new non-trivial feature is contributed or a bug
is fixed. To make a release, just open a PR that updates the change log with the current date. Once that PR
is approved and merged, you can create a new release on [GitHub](https://github.com/Quantco/glum/releases/
new). Use the version from the change log as tag and copy the change log entry into the release description.

6.3 Install for development

The first step is to set up a conda environment and install glum in editable mode. We strongly suggest to use mamba
instead of conda as this provides the same functionality at much greater speed.

# First, make sure you have conda-forge as your primary conda channel:
conda config --add channels conda-forge

# Clone the repository
git clone git@github.com:Quantco/glum.git
cd glum

# Set up a conda environment with name "glum"
mamba env create

# If you want to install the dependencies necessary for benchmarking against other GLM␣
→˓packages:
mamba env update -n glum --file environment-benchmark.yml

# If you want to work on the tutorial notebooks:
mamba env update -n glum --file environment-tutorial.yml

# Activate the previously created conda environment
conda activate glum

# Set up our pre-commit hooks for black, mypy, isort and flake8.
pre-commit install

# Install this package in editable mode.
pip install --no-use-pep517 --disable-pip-version-check -e .
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6.4 Testing and continuous integration

The test suite is in tests/.

6.4.1 Golden master tests

We use golden master testing to preserve correctness. The results of many different GLM models have been saved.
After an update, the tests will compare the new output to the saved models. Any significant deviation will result in a
test failure. This doesn’t strictly mean that the update was wrong. In case of a bug fix, it’s possible that the new output
will be more accurate than the old output. In that situation, the golden master results can be overwritten as explained
below.

There are two sets of golden master tests, one with artificial data and one directly using the benchmarking problems
from glum_benchmarks. For both sets of tests, creating the golden master and the tests definition are located in the
same file. Calling the file with pytest will run the tests while calling the file as a python script will generate the golden
master result. When creating the golden master results, both scripts accept the --overwrite command line flag. If
set, the existing golden master results will be overwritten. Otherwise, only the new problems will be run.

6.4.2 Skipping the slow tests

If you want to skip the slow tests, add the -m "not slow" flag to any pytest command. The “wide” problems (all
marked as slow tests) are especially poorly conditioned. This means that even for estimation with 10k observations, it
might still be very slow. Furthermore, we also have golden master tests for the “narrow” and “intermediate” problems,
so adding the “wide” problems do not add much coverage.

6.4.3 Storing and modifying

To store the golden master results:

python tests/glm/test_golden_master.py
python tests/glm/test_benchmark_golden_master.py

Add the --overwrite flag if you want to overwrite already existing golden master results

6.5 Building a conda package

To use the package in another project, we distribute it as a conda package. For building the package locally, you can
use the following command:

conda build conda.recipe

This will build the recipe using the standard compiler flags set by the conda-forge activation scripts.
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6.6 Developing the documentation

The documentation is built with a mix of Sphinx, autodoc, and nbsphinx. To develop the documentation:

cd docs
make html
python -m http.server --directory _build/html

Then, navigate to http://localhost:8000 to view the documentation.

Alternatively, if you install entr, then you can auto-rebuild the documentation any time a file changes with:

cd docs
./dev

Note: The tutorial notebooks are not executed as part of the documentation build. If you want to modify them, make
sure to execute them manually and save the output before committing. Also don’t forget to install the extra dependencies
for the tutorial notebooks as described above.

If you are a newbie to Sphinx, the links below may help get you up to speed on some of the trickier aspects:

• An idiot’s guide to Sphinx

• Links between documents

• Cross-referencing python objects using things like :mod: and :meth: and :class:.

• autodoc is used for automatically converting docstrings to docs

• We follow the numpy docstring style guide

• To create links between ipynb files when using nbsphinx

6.7 Where to start looking in the source?

The primary user interface of glum consists of the GeneralizedLinearRegressor and
GeneralizedLinearRegressorCV classes via their constructors and the fit() and predict() functions.
Those are the places to start looking if you plan to change the system in some way.

What follows is a high-level summary of the source code structure. For more details, please look in the documentation
and docstrings of the relevant classes, functions and methods.

• _glm.py - This is the main entrypoint and implements the core logic of the GLM. Most of the code in this file
handles input arguments and prepares the data for the GLM fitting algorithm.

• _glm_cv.py - This is the entrypoint for the cross validated GLM implementation. It depends on a lot of the
code in _glm.py and only modifies the sections necessary for running training many models with different
regularization parameters.

• _solvers.py - This contains the bulk of the IRLS and L-BFGS algorithms for training GLMs.

• _cd_fast.pyx - This is a Cython implementation of the coordinate descent algorithm used for fitting L1 penalty
GLMs. Note the .pyx extension indicating that it is a Cython source file.

• _distribution.py - definitions of the distributions that can be used. Includes Normal, Poisson, Gamma,
InverseGaussian, Tweedie, Binomial and GeneralizedHyperbolicSecant distributions.
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• _link.py - definitions of the link functions that can be used. Includes identity, log, logit and Tweedie link
functions.

• _functions.pyx - This is a Cython implementation of the log likelihoods, gradients and Hessians for several
popular distributions.

• _util.py - This contains a few general purpose linear algebra routines that serve several other modules and
don’t fit well elsewhere.

6.8 The GLM benchmark suite

Before deciding to build a library custom built for our purposes, we did an thorough investigation of the various open
source GLM implementations available. This resulted in an extensive suite of benchmarks for comparing the correct-
ness, runtime and availability of features for these libraries.

The benchmark suite has two command line entrypoints:

• glm_benchmarks_run

• glm_benchmarks_analyze

Both of these CLI tools take a range of arguments that specify the details of the benchmark problems and which libraries
to benchmark.

For more details on the benchmark suite, see the README in the source at src/glum_benchmarks/README.md.
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CHAPTER

SEVEN

AN INTRODUCTION TO THE ALGORITHMS USED IN GLUM

Before continuing, please take a look at the sklearn documentation for a high-level intro to generalized linear models.

In addition, please take a look at the tutorials.

For mathematical and algorithmic details, see below:

7.1 What is a GLM?

This package is intended to fit L1 and L2-norm penalized generalized linear models (GLMs). What is a GLM?

A GLM is a linear model (𝜂 = 𝑥⊤𝛽) wrapped in a transformation (link function) and equipped with a response
distribution from an exponential family. The choice of link function and response distribution is very flexible. In a
GLM, a predictive distribution for the response variable 𝑌 is associated with a vector of observed predictors 𝑥. The
distribution has the form:

𝑝(𝑦 |𝑥) = 𝑚(𝑦, 𝜑) exp

(︂
𝜃 𝑇 (𝑦)−𝐴(𝜃)

𝜑

)︂
random component / distribution family (7.1)

𝜃 := 𝑔(𝜂) systematic component / link function(7.2)
𝜂 := 𝑥⊤𝛽 parametric link component / linear predictor(7.3)

Here 𝛽 are the parameters; 𝜑 is a parameter representing dispersion (“variance”); and 𝑚, 𝑇 , 𝐴 are characterized by the
user-specified model family; and 𝑔 is the link function. For background on the exponential family, and how common
distributions can be represented in the form of the “random component” above, see Wikipedia | Exponential family.

The expected mean of 𝑌 depends on 𝑥 by composition of linear response 𝜂 and (inverse) link function, i.e.:

𝐸[𝑦|𝜂] := 𝜇 = 𝑔−1(𝜂).

Proving this involves use of moment-generating functions and cumulants.

Defining an offset of 𝛾, we can write the linear predictor as 𝜂 = 𝑋𝑇𝛽 + 𝛾.

7.2 Examples of GLMs

7.2.1 Normal

Many of the “regression” models we commonly work with are GLMs. For example, the normal distribution with a
linear link function is a simple GLM: 𝑦|𝑥 ∼ 𝑁(𝑥𝑇𝛽, 𝜎2). If we fit 𝛽 with maximum likelihood, this is least-squares
regression. If we replace the linear link function with an exponential link function, we get a simple multiplicative model
that is also a GLM: 𝑦|𝑥 ∼ 𝑁(𝑒𝑥

𝑇 𝛽 , 𝜎2).
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7.2.2 Tweedie

In the insurance context, we usually work with a Tweedie distribution, which is a generalization of Poisson (𝑝 = 1) and
Gamma (𝑝 = 2):

𝜃 =

{︃
𝜇1−𝑝

1−𝑝 if 𝑝 ̸= 1

log𝜇 if 𝑝 = 1
,

𝑇 (𝑦) = 𝑦,

𝐴(𝜃) =

{︃
𝜇2−𝑝

2−𝑝 if 𝑝 ̸= 2

log𝜇 if 𝑝 = 2.
,

With 1 < 𝑝 < 2, the Tweedie distribution is a compound Poisson-gamma distribution. 𝑦 is distributed as if a number
𝑁 is drawn from a Poisson distribution, and then 𝑁 draws are taken IID from a gamma distribution and added. This
distribution might model the total amount of a claim in an insurance context: There are 𝑁 incidents, and each incident
𝑖 has an amount 𝑋𝑖, and the total amount is the sum of 𝑋𝑖.

7.3 Objective function

To fit a GLM, we minimize the negative log-likelihood (or typically the unit deviance) subject to an elastic net constraint
involving a mix of L1 and L2 penalty terms:

min
𝛽

ℒ+ 𝛼𝜌||𝛽||1 +
𝛼(1− 𝜌)

2
||𝛽||22

7.4 Optimizers/solvers

There are three solvers implemented in glum:

• lbfgs - This solver uses the scipy fmin_l_bfgs_b optimizer to minimize L2-penalized GLMs. The L-BFGS
solver does not work with L1-penalties. Because L-BFGS does not store the full Hessian, it can be particularly
effective for very high dimensional problems with several thousand or more columns. For more details, see the
scipy documentation.

• irls-cd and irls-ls - These solvers are both based on Iteratively Reweighted Least Squares (IRLS). IRLS
proceeds by iteratively approximating the objective function with a quadratic, then solving that quadratic for the
optimal update. For purely L2-penalized settings, the irls-ls uses a least squares inner solver for each quadratic
subproblem. For problems that have any L1-penalty component, the irls-cd uses a coordinate descent inner
solver for each quadratic subproblem. The IRLS-LS and IRLS-CD implementations largely follow the algorithm
described in newglmnet (see references below).

7.4.1 Convexity

Our objective function will generally be convex, because the log-likelihoods of members of the exponential family are
convex in their “natural parameterizations.” The natural parameterization may not be the most obvious one. Example:
The log-likelihood of the normal distribution is convex in one over the variance, which is its natural parameterization.
It is not convex in the variance. We can generally assume we are solving convex problems.

An exception is multicollinearity (rank deficiency) in the design matrix, without an L2 component to the penalty. In that
case, the problem will be only weakly convex and will have no unique miminum. This is not an arcane consideration,
since we frequently generate rank deficiency by constructing multiple sets of one-hot encoded categorical variables.
This can make evaluating different optimizers tricky, since they could converge to different equally good optima. The
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original glmnet paper suggests using at least a small L2 regularization component to remove “degeneracies and wild
behavior.”

7.4.2 IRLS

We minimize the log likelihood using Iteratively Reweighted Least Squares (IRLS). IRLS can be justified by seeing it
as taking a Newton step, but replacing the Hessian with the expected Hessian.

In the irls-cd and irls-ls solvers, the outer loop is an IRLS iteration that forms a quadratic approximation to the
negative loglikelihood. That is, we find w and z so that the problem can be expressed as:

min sum_i w_i (z_i - x_i beta)^2 + penalty

We exit when either the gradient is small (gradient_tol) or the step size is small (step_size_tol). Both of these
tolerances are user configurable.

Once we have formed this quadratic approximation, an “inner solver” finds the minimum of the quadratic. In the
irls-ls solver, the inner solver is simply a direct least squares solve.

See the glmintro reference for an excellent discussion of IRLS in the context of GLMs.

7.4.3 Coordinate Descent

With an L1 penalty, we use the irls-cd solver where the inner solver finds the minimum of the quadratic using
coordinate descent. We exit the inner loop when the quadratic problem’s gradient is small. The classic reference here
is the glmnet paper.

However, coordinate descent is older than the glmnet paper, and is a simple idea. In a problem with data 𝑦 and 𝑥 and
parameters “params”, Coordinate Descent involves repeatedly optimizing one or several parameters while holding the
rest fixed. Interestingly, Wikipedia claims that coordinate descent is often overlooked among researchers because it is
simple to implement, and they would rather work on something more interesting.

[1]: """
Cyclical coordinate descent with Newton-like steps and a
twice-differentiable objective function.
"""
def coordinate_descent_inner(y, x, params, grad_func, hess_func):

for i, elt in enumerate(params):
step = -grad_func(y, x, params) / hess_func(y, x, params)
params[i] += step

return params

def coordinate_descent(y, x, params, grad_func, hess_func,
convergence_func):

while not convergence_func():
params = coordinate_descent_inner(y, x, params, grad_func,

hess_func)
return params

In practice, the implementation is a bit more complicated when the objective function is not differentiable. See also
the coordinate_descent reference below.
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7.4.4 Active set tracking

When penalizing with an L1-norm, it is common for many coefficients to be exactly zero. And, it is possible to predict
during a given iteration which of those coefficients will stay zero. As a result, we track the “active set” consisting of
all the coefficients that are either currently non-zero or likely to remain non-zero. We follow the outer loop active set
tracking algorithm in the newglmnet reference. That paper refers to the same concept as “shrinkage”, whereas the
glmnet reference calls this the “active set”. Currently, we have not yet implemented the inner loop active set tracking
from the newglmnet reference.

7.5 Matrix Types

Along with the GLM solvers, this package supports dense, sparse, categorical matrix types and mixtures of these types.
Using the most efficient matrix representations massively improves performances.

For more details, see the README for tabmat

• We support dense matrices via standard numpy arrays.

• We support sparse CSR and CSC matrices via standard scipy.sparse objects. However, we have extended these
operations with custom matrix-vector and sandwich product routines that are optimized and parallelized. A user
does not need to modify their code to take advantage of this optimization. If a scipy.sparse.csc_matrix
object is passed in, it will be automatically converted to a SparseMatrix object. This operation is almost free
because no data needs to be copied.

• We implement a CategoricalMatrix object that efficiently represents these matrices without nearly as much
overhead as a normal CSC or CSR sparse matrix.

• Finally, SplitMatrix allows mixing different matrix types for different columns to minimize overhead.

7.6 Standardization

Internal to our solvers, all matrix types are wrapped in a tabmat.StandardizedMatrix which offsets columns to
have mean zero and standard deviation one without modifying the matrix data itself. This avoids situations where
modifying a matrix to have mean zero would result in losing the sparsity structure. It also avoids ever needing to copy
or modify the input data matrix. As a result, excess memory usage is very low in glum.

7.7 References

glmnet - Regularization Paths for Generalized Linear Models via Coordinate Descent

newglmnet - An Improved GLMNET for L1-regularized LogisticRegression

glmintro - Bryan Lewis on GLMs

coordinate_descent - Coordinate Descent Algorithms

glmbook - Generalized Linear Models, McCullagh and Nelder

[ ]:
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CHAPTER

EIGHT

GLUM PACKAGE

The two main classes in glum are GeneralizedLinearRegressor and GeneralizedLinearRegressorCV . Most
users will use fit() and predict()

class glum.BinomialDistribution

Bases: ExponentialDispersionModel

A class for the Binomial distribution.

The Binomial distribution is for targets y in [0, 1].

deviance(y, mu, sample_weight=1)
Compute the deviance.

The deviance is a weighted sum of the unit deviances,
∑︀

𝑖 𝑠𝑖×𝑑(𝑦𝑖, 𝜇𝑖), where 𝑑(𝑦, 𝜇) is the unit deviance
and 𝑠 are weights. In terms of the log likelihood, it is −2𝜑× [𝐿(𝑦, 𝜇, 𝜑/𝑠)− 𝐿(𝑦, 𝑦, 𝜑/𝑠)].

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inversely proportional.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.
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• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

log_likelihood(y, mu, sample_weight=None, dispersion=1)
Compute the log likelihood.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

64 Chapter 8. glum package



glum

• dispersion (float, optional (default=1)) – Ignored.

Return type
float

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

unit_deviance(y, mu)
Get the unit-level deviance.

See superclass documentation.

Parameters

• y (array-like) –

• mu (array-like) –

Return type
array-like

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

unit_variance(mu)
Get the unit-level expected variance.

See superclass documentation.

Parameters
mu (array-like) –
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Return type
array-like

unit_variance_derivative(mu)
Get the derivative of the unit variance.

See superclass documentation.

Parameters
mu (array-like or float) –

Return type
array-like

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.CloglogLink

Bases: Link

The complementary log-log link function log(-log(-p)).

derivative(mu)
Get the derivative of the cloglog link.

See superclass documentation.

Parameters
mu (array-like) –

Return type
array-like
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inverse(lin_pred)
Get the inverse of the cloglog link.

See superclass documentation.

Note: since passing a very large value might result in an output of one, this function bounds the output to
be between [50*eps, 1 - 50*eps], where eps is floating point epsilon.

Parameters
lin_pred (array-like) –

Return type
array-like

inverse_derivative(lin_pred)
Compute the derivative of the inverse link function h'(lin_pred).

Parameters
lin_pred (array, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative2(lin_pred)
Compute second derivative of the inverse link function h''(lin_pred).

Parameters
lin_pred (array, shape (n_samples,)) – Usually the (fitted) linear predictor.

link(mu)
Get the logit function of mu.

See superclass documentation.

Parameters
mu (array-like) –

Return type
numpy.ndarray

class glum.ExponentialDispersionModel

Bases: object

Base class for reproductive Exponential Dispersion Models (EDM).

The PDF of 𝑌 ∼ EDM(𝜇, 𝜑) is given by

𝑝(𝑦 | 𝜃, 𝜑) = 𝑐(𝑦, 𝜑) exp((𝜃𝑦 −𝐴(𝜃)/𝜑)

= 𝑐(𝑦, 𝜑) exp(−𝑑(𝑦, 𝜇)/(2𝜑))

with mean E(𝑌 ) = 𝐴′(𝜃) = 𝜇, variance var(𝑌 ) = 𝜑 · 𝑣(𝜇), unit variance 𝑣(𝜇) and unit deviance 𝑑(𝑦, 𝜇).

8.1 Properties

lower_bound upper_bound include_lower_bound include_upper_bound

in_y_range()

Return type
ndarray

unit_variance()
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unit_variance_derivative()

variance()

Parameters
mu (ndarray) –

Return type
ndarray

variance_derivative()

unit_deviance()

unit_deviance_derivative()

deviance()

deviance_derivative()

starting_mu()

_mu_deviance_derivative()

eta_mu_deviance()

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

gradient_hessian()

References

https://en.wikipedia.org/wiki/Exponential_dispersion_model.

deviance(y, mu, sample_weight=1)
Compute the deviance.

The deviance is a weighted sum of the unit deviances,
∑︀

𝑖 𝑠𝑖×𝑑(𝑦𝑖, 𝜇𝑖), where 𝑑(𝑦, 𝜇) is the unit deviance
and 𝑠 are weights. In terms of the log likelihood, it is −2𝜑× [𝐿(𝑦, 𝜇, 𝜑/𝑠)− 𝐿(𝑦, 𝑦, 𝜑/𝑠)].

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inversely proportional.

Return type
float
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deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –
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• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

abstract property include_lower_bound: bool

Return whether lower_bound is allowed as a value of y.

abstract property include_upper_bound: bool

Return whether upper_bound is allowed as a value of y.

abstract property lower_bound: float

Get the lower bound of values for the EDM.

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

abstract unit_deviance(y, mu)
Compute the unit deviance.

In terms of the log likelihood 𝐿, the unit deviance is −2𝜑× [𝐿(𝑦, 𝜇, 𝜑)− 𝐿(𝑦, 𝑦, 𝜑)].

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters
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• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

abstract unit_variance(mu)
Compute the unit variance function.

The unit variance 𝑣(𝜇) determines the variance as a function of the mean 𝜇 by var(𝑦𝑖) = (𝜑/𝑠𝑖)× 𝑣(𝜇𝑖).
It can also be derived from the unit deviance 𝑑(𝑦, 𝜇) as

𝑣(𝜇) =
2

𝜕2𝑑(𝑦,𝜇)
𝜕𝜇2

⃒⃒
𝑦=𝜇

.

See also variance().

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

abstract unit_variance_derivative(mu)
Compute the derivative of the unit variance with respect to mu.

Return 𝑣′(𝜇).

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

abstract property upper_bound: float

Get the upper bound of values for the EDM.

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)
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class glum.GammaDistribution

Bases: TweedieDistribution

Class for the Gamma distribution.

deviance(y, mu, sample_weight=None)
Compute the deviance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float
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eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

property include_lower_bound: bool

Return whether lower_bound is allowed as a value of y.

log_likelihood(y, mu, sample_weight=None, dispersion=None)
Compute the log likelihood.

For 1 < power < 2, we use the series approximation by Dunn and Smyth (2005) to compute the normal-
ization term.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

• dispersion (float, optional (default=None)) – Dispersion parameter 𝜑. Esti-
mated if None.

Return type
float

property lower_bound: float

Return the lowest value of y allowed.
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property power: float

Return the Tweedie power parameter.

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

unit_deviance(y, mu)
Get the deviance of each observation.

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

unit_variance(mu)
Compute the unit variance of a Tweedie distribution v(mu) = mu^power.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

unit_variance_derivative(mu)
Compute the derivative of the unit variance of a Tweedie distribution.

Equation: 𝑣(𝜇) = 𝑝× 𝜇(𝑝−1).

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.
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Return type
numpy.ndarray, shape (n_samples,)

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.GeneralizedHyperbolicSecant

Bases: ExponentialDispersionModel

A class for the Generalized Hyperbolic Secant (GHS) distribution.

The GHS distribution is for targets y in (-∞, +∞).

deviance(y, mu, sample_weight=1)
Compute the deviance.

The deviance is a weighted sum of the unit deviances,
∑︀

𝑖 𝑠𝑖×𝑑(𝑦𝑖, 𝜇𝑖), where 𝑑(𝑦, 𝜇) is the unit deviance
and 𝑠 are weights. In terms of the log likelihood, it is −2𝜑× [𝐿(𝑦, 𝜇, 𝜑/𝑠)− 𝐿(𝑦, 𝑦, 𝜑/𝑠)].

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inversely proportional.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters
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• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –
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in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

unit_deviance(y, mu)
Get the unit-level deviance.

See superclass documentation.

Parameters

• y (array-like) –

• mu (array-like) –

Return type
array-like

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)
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unit_variance(mu)
Get the unit-level expected variance.

See superclass documentation.

Parameters
mu (array-like or float) –

Return type
array-like

unit_variance_derivative(mu)
Get the derivative of the unit variance.

See superclass documentation.

Parameters
mu (array-like or float) –

Return type
array-like

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)
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class glum.GeneralizedLinearRegressor(alpha=None, l1_ratio=0, P1='identity', P2='identity',
fit_intercept=True, family='normal', link='auto', solver='auto',
max_iter=100, gradient_tol=None, step_size_tol=None,
hessian_approx=0.0, warm_start=False, alpha_search=False,
alphas=None, n_alphas=100, min_alpha_ratio=None,
min_alpha=None, start_params=None, selection='cyclic',
random_state=None, copy_X=None, check_input=True,
verbose=0, scale_predictors=False, lower_bounds=None,
upper_bounds=None, A_ineq=None, b_ineq=None,
force_all_finite=True, drop_first=False, robust=True,
expected_information=False)

Bases: GeneralizedLinearRegressorBase

Regression via a Generalized Linear Model (GLM) with penalties.

GLMs based on a reproductive Exponential Dispersion Model (EDM) aimed at fitting and predicting the mean
of the target y as mu=h(X*w). Therefore, the fit minimizes the following objective function with combined L1
and L2 priors as regularizer:

1/(2*sum(s)) * deviance(y, h(X*w); s)
+ alpha * l1_ratio * ||P1*w||_1
+ 1/2 * alpha * (1 - l1_ratio) * w*P2*w

with inverse link function h and s=sample_weight. Note that, for alpha=0 the unregularized GLM is re-
covered. This is not the default behavior (see alpha parameter description for details). Additionally, for
sample_weight=None, one has s_i=1 and sum(s)=n_samples. For P1=P2='identity', the penalty is the
elastic net:

alpha * l1_ratio * ||w||_1 + 1/2 * alpha * (1 - l1_ratio) * ||w||_2^2.

If you are interested in controlling the L1 and L2 penalties separately, keep in mind that this is equivalent to:

a * L1 + b * L2,

where:

alpha = a + b and l1_ratio = a / (a + b).

The parameter l1_ratio corresponds to alpha in the R package glmnet, while alpha corresponds to the lambda
parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty.

Read more in background.

Parameters

• alpha ({float, array-like}, optional (default=None)) – Constant that multi-
plies the penalty terms and thus determines the regularization strength. If alpha_search
is False (the default), then alpha must be a scalar or None (equivalent to alpha=1.0). If
alpha_search is True, then alpha must be an iterable or None. See alpha_search to
find how the regularization path is set if alpha is None. See the notes for the exact mathe-
matical meaning of this parameter. alpha = 0 is equivalent to unpenalized GLMs. In this
case, the design matrix X must have full column rank (no collinearities).

• l1_ratio (float, optional (default=0)) – The elastic net mixing parameter, with 0
<= l1_ratio <= 1. For l1_ratio = 0, the penalty is an L2 penalty. For l1_ratio =
1, it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
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• P1 ({'identity', array-like, None}, shape (n_features,), optional
(default='identity')) – This array controls the strength of the regularization for
each coefficient independently. A high value will lead to higher regularization while a
value of zero will remove the regularization on this parameter. Note that n_features =
X.shape[1]. If X is a pandas DataFrame with a categorical dtype and P1 has the same size
as the number of columns, the penalty of the categorical column will be applied to all the
levels of the categorical.

• P2 ({'identity', array-like, sparse matrix, None}, shape (n_features,)
or (n_features, n_features), optional (default='identity')) – With this
option, you can set the P2 matrix in the L2 penalty w*P2*w. This gives a fine control over
this penalty (Tikhonov regularization). A 2d array is directly used as the square matrix
P2. A 1d array is interpreted as diagonal (square) matrix. The default 'identity' and
None set the identity matrix, which gives the usual squared L2-norm. If you just want to
exclude certain coefficients, pass a 1d array filled with 1 and 0 for the coefficients to be
excluded. Note that P2 must be positive semi-definite. If X is a pandas DataFrame with a
categorical dtype and P2 has the same size as the number of columns, the penalty of the
categorical column will be applied to all the levels of the categorical. Note that if P2 is
two-dimensional, its size needs to be of the same length as the expanded X matrix.

• fit_intercept (bool, optional (default=True)) – Specifies if a constant (a.k.a.
bias or intercept) should be added to the linear predictor (X * coef + intercept).

• family (str or ExponentialDispersionModel, optional (default='normal'))
– The distributional assumption of the GLM, i.e. the loss function to minimize. If a
string, one of: 'binomial', 'gamma', 'gaussian', 'inverse.gaussian', 'normal',
'poisson', 'tweedie' or 'negative.binomial'. Note that 'tweedie' sets the power
of the Tweedie distribution to 1.5; to use another value, specify it in parentheses (e.g.,
'tweedie (1.5)'). The same applies for 'negative.binomial' and theta parameter.

• link ({'auto', 'identity', 'log', 'logit', 'cloglog'} oe Link, optional
(default='auto')) – The link function of the GLM, i.e. mapping from linear predictor (X
* coef) to expectation (mu). Option 'auto' sets the link depending on the chosen family
as follows:

– 'identity' for family 'normal'

– 'log' for families 'poisson', 'gamma', 'inverse.gaussian' and 'negative.
binomial'.

– 'logit' for family 'binomial'

• solver ({'auto', 'irls-cd', 'irls-ls', 'lbfgs', 'trust-constr'}, optional
(default='auto')) – Algorithm to use in the optimization problem:

– 'auto': 'irls-ls' if l1_ratio is zero and 'irls-cd' otherwise.

– 'irls-cd': Iteratively reweighted least squares with a coordinate descent inner solver.
This can deal with L1 as well as L2 penalties. Note that in order to avoid unnecessary
memory duplication of X in the fit method, X should be directly passed as a Fortran-
contiguous Numpy array or sparse CSC matrix.

– 'irls-ls': Iteratively reweighted least squares with a least squares inner solver. This
algorithm cannot deal with L1 penalties.

– 'lbfgs': Scipy’s L-BFGS-B optimizer. It cannot deal with L1 penalties.

– 'trust-constr': Calls scipy.optimize.minimize(method='trust-constr'). It
cannot deal with L1 penalties. This solver can optimize problems with inequality con-
straints, passed via A_ineq and b_ineq. It will be selected automatically when inequality
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constraints are set and solver='auto'. Note that using this method can lead to signifi-
cantly increased runtimes by a factor of ten or higher.

• max_iter (int, optional (default=100)) – The maximal number of iterations for
solver algorithms.

• gradient_tol (float, optional (default=None)) – Stopping criterion. If None,
solver-specific defaults will be used. The default value for most solvers is 1e-4, except for
'trust-constr', which requires more conservative convergence settings and has a default
value of 1e-8.

For the IRLS-LS, L-BFGS and trust-constr solvers, the iteration will stop when max{|g_i|,
i = 1, ..., n} <= tol, where g_i is the i-th component of the gradient (derivative) of
the objective function. For the CD solver, convergence is reached when sum_i(|minimum
norm of g_i|), where g_i is the subgradient of the objective and the minimum norm of
g_i is the element of the subgradient with the smallest L2 norm.

If you wish to only use a step-size tolerance, set gradient_tol to a very small number.

• step_size_tol (float, optional (default=None)) – Alternative stopping criterion.
For the IRLS-LS and IRLS-CD solvers, the iteration will stop when the L2 norm of the step
size is less than step_size_tol. This stopping criterion is disabled when step_size_tol
is None.

• hessian_approx (float, optional (default=0.0)) – The threshold below which
data matrix rows will be ignored for updating the Hessian. See the algorithm documentation
for the IRLS algorithm for further details.

• warm_start (bool, optional (default=False)) – Whether to reuse the solution
of the previous call to fit as initialization for coef_ and intercept_ (supersedes
start_params). If False or if the attribute coef_ does not exist (first call to fit),
start_params sets the start values for coef_ and intercept_.

• alpha_search (bool, optional (default=False)) – Whether to search along the
regularization path for the best alpha. When set to True, alpha should either be None or an
iterable. To determine the regularization path, the following sequence is used:

1. If alpha is an iterable, use it directly. All other parameters governing the regularization
path are ignored.

2. If min_alpha is set, create a path from min_alpha to the lowest alpha such that all coef-
ficients are zero.

3. If min_alpha_ratio is set, create a path where the ratio of min_alpha / max_alpha
= min_alpha_ratio.

4. If none of the above parameters are set, use a min_alpha_ratio of 1e-6.

• alphas (DEPRECATED. Use alpha instead.) –

• n_alphas (int, optional (default=100)) – Number of alphas along the regulariza-
tion path

• min_alpha_ratio (float, optional (default=None)) – Length of the path.
min_alpha_ratio=1e-6 means that min_alpha / max_alpha = 1e-6. If None, 1e-6
is used.

• min_alpha (float, optional (default=None)) – Minimum alpha to estimate the
model with. The grid will then be created over [max_alpha, min_alpha].

• start_params (array-like, shape (n_features*,), optional
(default=None)) – Relevant only if warm_start is False or if fit is called for
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the first time (so that self.coef_ does not exist yet). If None, all coefficients are set to
zero and the start value for the intercept is the weighted average of y (If fit_intercept
is True). If an array, used directly as start values; if fit_intercept is True, its first
element is assumed to be the start value for the intercept_. Note that n_features* =
X.shape[1] + fit_intercept, i.e. it includes the intercept.

• selection (str, optional (default='cyclic')) – For the CD solver ‘cd’, the coor-
dinates (features) can be updated in either cyclic or random order. If set to 'random', a
random coefficient is updated every iteration rather than looping over features sequentially
in the same order, which often leads to significantly faster convergence, especially when
gradient_tol is higher than 1e-4.

• random_state (int or RandomState, optional (default=None)) – The seed of
the pseudo random number generator that selects a random feature to be updated for the
CD solver. If an integer, random_state is the seed used by the random number generator;
if a RandomState instance, random_state is the random number generator; if None, the
random number generator is the RandomState instance used by np.random. Used when
selection is 'random'.

• copy_X (bool, optional (default=None)) – Whether to copy X. Since X is never mod-
ified by GeneralizedLinearRegressor, this is unlikely to be needed; this option exists
mainly for compatibility with other scikit-learn estimators. If False, X will not be copied
and there will be an error if you pass an X in the wrong format, such as providing integer X
and float y. If None, X will not be copied unless it is in the wrong format.

• check_input (bool, optional (default=True)) – Whether to bypass several checks
on input: y values in range of family, sample_weight non-negative, P2 positive semi-
definite. Don’t use this parameter unless you know what you are doing.

• verbose (int, optional (default=0)) – For the IRLS solver, any positive number
will result in a pretty progress bar showing convergence. This features requires having the
tqdm package installed. For the L-BFGS and 'trust-constr' solvers, set verbose to any
positive number for verbosity.

• scale_predictors (bool, optional (default=False)) – If True, estimate a scaled
model where all predictors have a standard deviation of 1. This can result in better estimates
if predictors are on very different scales (for example, centimeters and kilometers).

Advanced developer note: Internally, predictors are always rescaled for computational rea-
sons, but this only affects results if scale_predictors is True.

• lower_bounds (array-like, shape (n_features,), optional
(default=None)) – Set a lower bound for the coefficients. Setting bounds forces
the use of the coordinate descent solver ('irls-cd').

• upper_bounds (array-like, shape=(n_features,), optional
(default=None)) – See lower_bounds.

• A_ineq (array-like, shape=(n_constraints, n_features), optional
(default=None)) – Constraint matrix for linear inequality constraints of the form
A_ineq w <= b_ineq. Setting inequality constraints forces the use of the local gradient-
based solver 'trust-constr', which may increase runtime significantly. Note that the
constraints only apply to coefficients related to features in X. If you want to constrain the
intercept, add it to the feature matrix X manually and set fit_intercept==False.

• b_ineq (array-like, shape=(n_constraints,), optional (default=None)) –
Constraint vector for linear inequality constraints of the form A_ineq w <= b_ineq. Refer
to the documentation of A_ineq for details.
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• drop_first (bool, optional (default = False)) – If True, drop the first column
when encoding categorical variables. Set this to True when alpha=0 and solver=’auto’ to
prevent an error due to a singular feature matrix.

• robust (bool, optional (default = False)) – If true, then robust standard errors
are computed by default.

• expected_information (bool, optional (default = False)) – If true, then the ex-
pected information matrix is computed by default. Only relevant when computing robust
standard errors.

• force_all_finite (bool) –

coef_

Estimated coefficients for the linear predictor (X*coef_+intercept_) in the GLM.

Type
numpy.array, shape (n_features,)

intercept_

Intercept (a.k.a. bias) added to linear predictor.

Type
float

n_iter_

Actual number of iterations used in solver.

Type
int

Notes

The fit itself does not need outcomes to be from an EDM, but only assumes the first two moments to be 𝜇𝑖 ≡
E(𝑦𝑖) = ℎ(𝑥′

𝑖𝑤) and var(𝑦𝑖) = (𝜑/𝑠𝑖)𝑣(𝜇𝑖). The unit variance function 𝑣(𝜇𝑖) is a property of and given by the
specific EDM; see background.

The parameters 𝑤 (coef_ and intercept_) are estimated by minimizing the deviance plus penalty term, which
is equivalent to (penalized) maximum likelihood estimation.

For alpha > 0, the feature matrix X should be standardized in order to penalize features equally strong. Call
sklearn.preprocessing.StandardScaler before calling fit.

If the target y is a ratio, appropriate sample weights s should be provided. As an example, consider Poisson
distributed counts z (integers) and weights s = exposure (time, money, persons years, . . . ). Then you fit y
z/s, i.e. GeneralizedLinearModel(family='poisson').fit(X, y, sample_weight=s). The weights
are necessary for the right (finite sample) mean. Consider 𝑦 =

∑︀
𝑖 𝑠𝑖𝑦𝑖/

∑︀
𝑖 𝑠𝑖: in this case, one might say that

𝑦 follows a ‘scaled’ Poisson distribution. The same holds for other distributions.
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References

For the coordinate descent implementation:

• Guo-Xun Yuan, Chia-Hua Ho, Chih-Jen Lin An Improved GLMNET for L1-regularized Logistic Re-
gression, Journal of Machine Learning Research 13 (2012) 1999-2030 https://www.csie.ntu.edu.tw/
~cjlin/papers/l1_glmnet/long-glmnet.pdf

aic(X, y, sample_weight=None)

Akaike’s information criteria. Computed as: −2 log ℒ̂+ 2𝑘 where ℒ̂ is the maximum likelihood estimate
of the model, and 𝑘 is the effective number of parameters. See _compute_information_criteria for more
information on the computation of 𝑘.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Same
data as used in ‘fit’

• y (array-like, shape (n_samples,)) – Same data as used in ‘fit’

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Same data as used in ‘fit’

aicc(X, y, sample_weight=None)

Second-order Akaike’s information criteria (or small sample AIC). Computed as: −2 log ℒ̂+2𝑘+ 2𝑘(𝑘+1)
𝑛−𝑘−1

where ℒ̂ is the maximum likelihood estimate of the model, 𝑛 is the number of training instances, and 𝑘
is the effective number of parameters. See _compute_information_criteria for more information on the
computation of 𝑘.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Same
data as used in ‘fit’

• y (array-like, shape (n_samples,)) – Same data as used in ‘fit’

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Same data as used in ‘fit’

bic(X, y, sample_weight=None)

Bayesian information criterion. Computed as: −2 log ℒ̂ + 𝑘 log(𝑛) where ℒ̂ is the maximum likelihood
estimate of the model, 𝑛 is the number of training instances, and 𝑘 is the effective number of parameters.
See _compute_information_criteria for more information on the computation of 𝑘.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Same
data as used in ‘fit’

• y (array-like, shape (n_samples,)) – Same data as used in ‘fit’

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Same data as used in ‘fit’

coef_table(confidence_level=0.95, X=None, y=None, mu=None, offset=None, sample_weight=None,
dispersion=None, robust=None, clusters=None, expected_information=None)

Get a table of of the regression coefficients.

Includes coefficient estimates, standard errors, t-values, p-values and confidence intervals.

Parameters
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• confidence_level (float, optional, default=0.95) – The confidence level for
the confidence intervals.

• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed or if standard errors, etc. are not desired.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

Returns
A table of the regression results.

Return type
pandas.DataFrame

covariance_matrix(X=None, y=None, mu=None, offset=None, sample_weight=None, dispersion=None,
robust=None, clusters=None, expected_information=None,
store_covariance_matrix=False, skip_checks=False)

Calculate the covariance matrix for generalized linear models.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.
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• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

• store_covariance_matrix (boolean, optional, default=False) – Whether to
store the covariance matrix in the model instance. If a covariance matrix has already been
stored, it will be overwritten.

• skip_checks (boolean, optional, default=False) – Whether to skip input vali-
dation. For internal use only.

Notes

We support three types of covariance matrices:

• non-robust

• robust (HC-1)

• clustered

For maximum-likelihood estimator, the covariance matrix takes the form ℋ−1(𝜃0)ℐ(𝜃0)ℋ−1(𝜃0) where
ℋ−1 is the inverse Hessian and ℐ is the Information matrix. The different types of covariance matrices use
different approximation of these quantities.

The non-robust covariance matrix is computed as the inverse of the Fisher information matrix. This assumes
that the information matrix equality holds.

The robust (HC-1) covariance matrix takes the form H1(𝜃)G𝑇 (𝜃)G(𝜃)H1(𝜃) where H is the empirical
Hessian and G is the gradient. We apply a finite-sample correction of 𝑁

𝑁−𝑝 .

The clustered covariance matrix uses a similar approach to the robust (HC-1) covariance matrix. However,
instead of using G𝑇 (𝜃G(𝜃) directly, we first sum over all the groups first. The finite-sample correction is
affected as well, becoming 𝑀

𝑀−1
𝑁

𝑁−𝑝 where 𝑀 is the number of groups.

References

property family_instance: ExponentialDispersionModel

Return an ExponentialDispersionModel.

fit(X, y, sample_weight=None, offset=None, store_covariance_matrix=False, clusters=None,
weights_sum=None)
Fit a Generalized Linear Model.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Train-
ing data. Note that a float32 matrix is acceptable and will result in the entire algorithm
being run in 32-bit precision. However, for problems that are poorly conditioned, this
might result in poor convergence or flawed parameter estimates. If a Pandas data frame is
provided, it may contain categorical columns. In that case, a separate coefficient will be
estimated for each category. No category is omitted. This means that some regularization
is required to fit models with an intercept or models with several categorical columns.

• y (array-like, shape (n_samples,)) – Target values.
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• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Individual weights w_i for each sample. Note that, for an Exponential
Dispersion Model (EDM), one has var(𝑦𝑖) = 𝜑 × 𝑣(𝑚𝑢)/𝑤𝑖. If 𝑦𝑖 ∼ 𝐸𝐷𝑀(𝜇, 𝜑/𝑤𝑖),
then

∑︀
𝑤𝑖𝑦𝑖/

∑︀
𝑤𝑖 ∼ 𝐸𝐷𝑀(𝜇, 𝜑/

∑︀
𝑤𝑖), i.e. the mean of 𝑦 is a weighted average with

weights equal to sample_weight.

• offset (array-like, shape (n_samples,), optional (default=None)) –
Added to linear predictor. An offset of 3 will increase expected y by 3 if the link is linear
and will multiply expected y by 3 if the link is logarithmic.

• store_covariance_matrix (bool, optional (default=False)) – Whether to es-
timate and store the covariance matrix of the parameter estimates. If True, the covariance
matrix will be available in the covariance_matrix_ attribute after fitting.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• weights_sum (float, optional (default=None)) –

Return type
self

get_formatted_diagnostics(full_report=False, custom_columns=None)
Get formatted diagnostics; can be printed with _report_diagnostics.

Parameters

• full_report (bool, optional (default=False)) – Print all available information.
When False and custom_columns is None, a restricted set of columns is printed out.

• custom_columns (iterable, optional (default=None)) – Print only the specified
columns.

Return type
str | DataFrame

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict
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linear_predictor(X, offset=None, alpha_index=None, alpha=None)
Compute the linear predictor, X * coef_ + intercept_.

If alpha_search is True, but alpha_index and alpha are both None, we use the last alpha value self.
_alphas[-1].

Parameters

• X (array-like, shape (n_samples, n_features)) – Observations. Xmay be a pan-
das data frame with categorical types. If X was also a data frame with categorical types
during fitting and a category wasn’t observed at that point, the corresponding prediction
will be numpy.nan.

• offset (array-like, shape (n_samples,), optional (default=None)) –

• alpha_index (int or list[int], optional (default=None)) – Sets the index of
the alpha(s) to use in case alpha_search is True. Incompatible with alpha (see below).

• alpha (float or list[float], optional (default=None)) – Sets the alpha(s) to
use in case alpha_search is True. Incompatible with alpha_index (see above).

Returns
The linear predictor.

Return type
array, shape (n_samples, n_alphas)

property link_instance: Link

Return a Link .

predict(X, sample_weight=None, offset=None, alpha_index=None, alpha=None)
Predict using GLM with feature matrix X.

If alpha_search is True, but alpha_index and alpha are both None, we use the last alpha value self.
_alphas[-1].

Parameters

• X (array-like, shape (n_samples, n_features)) – Observations. Xmay be a pan-
das data frame with categorical types. If X was also a data frame with categorical types
during fitting and a category wasn’t observed at that point, the corresponding prediction
will be numpy.nan.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Sample weights to multiply predictions by.

• offset (array-like, shape (n_samples,), optional (default=None)) –

• alpha_index (int or list[int], optional (default=None)) – Sets the index of
the alpha(s) to use in case alpha_search is True. Incompatible with alpha (see below).

• alpha (float or list[float], optional (default=None)) – Sets the alpha(s) to
use in case alpha_search is True. Incompatible with alpha_index (see above).

Returns
Predicted values times sample_weight.

Return type
array, shape (n_samples, n_alphas)

report_diagnostics(full_report=False, custom_columns=None)
Print diagnostics to stdout.
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Parameters

• full_report (bool, optional (default=False)) – Print all available information.
When False and custom_columns is None, a restricted set of columns is printed out.

• custom_columns (iterable, optional (default=None)) – Print only the specified
columns.

Return type
None

score(X, y, sample_weight=None, offset=None)
Compute 𝐷2, the percentage of deviance explained.

𝐷2 is a generalization of the coefficient of determination 𝑅2. The 𝑅2 uses the squared error and the 𝐷2,
the deviance. Note that those two are equal for family='normal'.

𝐷2 is defined as 𝐷2 = 1 − 𝐷(𝑦true,𝑦pred)
𝐷null

, 𝐷null is the null deviance, i.e. the deviance of a model with
intercept alone. The best possible score is one and it can be negative.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Test
samples.

• y (array-like, shape (n_samples,)) – True values of target.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Sample weights.

• offset (array-like, shape (n_samples,), optional (default=None)) –

Returns
D^2 of self.predict(X) w.r.t. y.

Return type
float

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

std_errors(X=None, y=None, mu=None, offset=None, sample_weight=None, dispersion=None,
robust=None, clusters=None, expected_information=None, store_covariance_matrix=False)

Calculate standard errors for generalized linear models.

See covariance_matrix for an in-depth explanation of how the standard errors are computed.

Parameters
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• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

• store_covariance_matrix (boolean, optional, default=False) – Whether to
store the covariance matrix in the model instance. If a covariance matrix has already been
stored, it will be overwritten.

wald_test(R=None, features=None, r=None, X=None, y=None, mu=None, offset=None,
sample_weight=None, dispersion=None, robust=None, clusters=None,
expected_information=None)

Compute the Wald test statistic and p-value for a linear hypothesis.

The left hand side of the hypothesis may be specified in the following ways:

• R: The restriction matrix representing the linear combination of coefficients to test.

• features: The name of a feature or a list of features to test.

The right hand side of the tested hypothesis is specified by r.

Parameters

• R (np.ndarray, optional, default=None) – The restriction matrix representing the
linear combination of coefficients to test.

• features (Union[str, list[str]], optional, default=None) – The name of a
feature or a list of features to test.

• r (np.ndarray, optional, default=None) – The vector representing the values of
the linear combination. If None, the test is for whether the linear combinations of the
coefficients are zero.

• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.
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• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

Returns
NamedTuple with test statistic, p-value, and degrees of freedom.

Return type
WaldTestResult

class glum.GeneralizedLinearRegressorCV(l1_ratio=0, P1='identity', P2='identity', fit_intercept=True,
family='normal', link='auto', solver='auto', max_iter=100,
gradient_tol=None, step_size_tol=None, hessian_approx=0.0,
warm_start=False, n_alphas=100, alphas=None,
min_alpha_ratio=None, min_alpha=None, start_params=None,
selection='cyclic', random_state=None, copy_X=True,
check_input=True, verbose=0, scale_predictors=False,
lower_bounds=None, upper_bounds=None, A_ineq=None,
b_ineq=None, force_all_finite=True, cv=None, n_jobs=None,
drop_first=False, robust=True, expected_information=False)

Bases: GeneralizedLinearRegressorBase

Generalized linear model with iterative fitting along a regularization path.

The best model is selected by cross-validation.

Cross-validated regression via a Generalized Linear Model (GLM) with penalties. For more on GLMs and
on these parameters, see the documentation for GeneralizedLinearRegressor. CV conventions follow
sklearn.linear_model.LassoCV.

Parameters

• l1_ratio (float or array of floats, optional (default=0)) – If you pass
l1_ratio as an array, the fit method will choose the best value of l1_ratio and store
it as self.l1_ratio.

• P1 ({'identity', array-like, None}, shape (n_features,), optional
(default='identity')) – This array controls the strength of the regularization for
each coefficient independently. A high value will lead to higher regularization while a
value of zero will remove the regularization on this parameter. Note that n_features =
X.shape[1]. If X is a pandas DataFrame with a categorical dtype and P1 has the same size
as the number of columns, the penalty of the categorical column will be applied to all the
levels of the categorical.
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• P2 ({'identity', array-like, sparse matrix, None}, shape (n_features,)
or (n_features, n_features), optional (default='identity')) – With this
option, you can set the P2 matrix in the L2 penalty w*P2*w. This gives a fine control over
this penalty (Tikhonov regularization). A 2d array is directly used as the square matrix
P2. A 1d array is interpreted as diagonal (square) matrix. The default 'identity' and
None set the identity matrix, which gives the usual squared L2-norm. If you just want to
exclude certain coefficients, pass a 1d array filled with 1 and 0 for the coefficients to be
excluded. Note that P2 must be positive semi-definite. If X is a pandas DataFrame with a
categorical dtype and P2 has the same size as the number of columns, the penalty of the
categorical column will be applied to all the levels of the categorical. Note that if P2 is
two-dimensional, its size needs to be of the same length as the expanded X matrix.

• fit_intercept (bool, optional (default=True)) – Specifies if a constant (a.k.a.
bias or intercept) should be added to the linear predictor (X * coef + intercept).

• family (str or ExponentialDispersionModel, optional (default='normal'))
– The distributional assumption of the GLM, i.e. the loss function to minimize. If a
string, one of: 'binomial', 'gamma', 'gaussian', 'inverse.gaussian', 'normal',
'poisson', 'tweedie' or 'negative.binomial'. Note that 'tweedie' sets the power
of the Tweedie distribution to 1.5; to use another value, specify it in parentheses (e.g.,
'tweedie (1.5)'). The same applies for 'negative.binomial' and theta parameter.

• link ({'auto', 'identity', 'log', 'logit', 'cloglog'}, Link or None,
optional (default='auto')) – The link function of the GLM, i.e. mapping from
linear predictor (X * coef) to expectation (mu). Option 'auto' sets the link depending on
the chosen family as follows:

– 'identity' for family 'normal'

– 'log' for families 'poisson', 'gamma', 'inverse.gaussian' and 'negative.
binomial'.

– 'logit' for family 'binomial'

• solver ({'auto', 'irls-cd', 'irls-ls', 'lbfgs', 'trust-constr'}, optional
(default='auto')) – Algorithm to use in the optimization problem:

– 'auto': 'irls-ls' if l1_ratio is zero and 'irls-cd' otherwise.

– 'irls-cd': Iteratively reweighted least squares with a coordinate descent inner solver.
This can deal with L1 as well as L2 penalties. Note that in order to avoid unnecessary
memory duplication of X in the fit method, X should be directly passed as a Fortran-
contiguous Numpy array or sparse CSC matrix.

– 'irls-ls': Iteratively reweighted least squares with a least squares inner solver. This
algorithm cannot deal with L1 penalties.

– 'lbfgs': Scipy’s L-BFGS-B optimizer. It cannot deal with L1 penalties.

• max_iter (int, optional (default=100)) – The maximal number of iterations for
solver algorithms.

• gradient_tol (float, optional (default=None)) – Stopping criterion. If None,
solver-specific defaults will be used. The default value for most solvers is 1e-4, except for
'trust-constr', which requires more conservative convergence settings and has a default
value of 1e-8.

For the IRLS-LS, L-BFGS and trust-constr solvers, the iteration will stop when max{|g_i|,
i = 1, ..., n} <= tol, where g_i is the i-th component of the gradient (derivative) of
the objective function. For the CD solver, convergence is reached when sum_i(|minimum
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norm of g_i|), where g_i is the subgradient of the objective and the minimum norm of
g_i is the element of the subgradient with the smallest L2 norm.

If you wish to only use a step-size tolerance, set gradient_tol to a very small number.

• step_size_tol (float, optional (default=None)) – Alternative stopping criterion.
For the IRLS-LS and IRLS-CD solvers, the iteration will stop when the L2 norm of the step
size is less than step_size_tol. This stopping criterion is disabled when step_size_tol
is None.

• hessian_approx (float, optional (default=0.0)) – The threshold below which
data matrix rows will be ignored for updating the Hessian. See the algorithm documentation
for the IRLS algorithm for further details.

• warm_start (bool, optional (default=False)) – Whether to reuse the solution
of the previous call to fit as initialization for coef_ and intercept_ (supersedes
start_params). If False or if the attribute coef_ does not exist (first call to fit),
start_params sets the start values for coef_ and intercept_.

• n_alphas (int, optional (default=100)) – Number of alphas along the regulariza-
tion path

• alphas (array-like, optional (default=None)) – List of alphas for which to com-
pute the models. If None, the alphas are set automatically. Setting None is preferred.

• min_alpha_ratio (float, optional (default=None)) – Length of the path.
min_alpha_ratio=1e-6 means that min_alpha / max_alpha = 1e-6. If None, 1e-6
is used.

• min_alpha (float, optional (default=None)) – Minimum alpha to estimate the
model with. The grid will then be created over [max_alpha, min_alpha].

• start_params (array-like, shape (n_features*,), optional
(default=None)) – Relevant only if warm_start is False or if fit is called for
the first time (so that self.coef_ does not exist yet). If None, all coefficients are set to
zero and the start value for the intercept is the weighted average of y (If fit_intercept
is True). If an array, used directly as start values; if fit_intercept is True, its first
element is assumed to be the start value for the intercept_. Note that n_features* =
X.shape[1] + fit_intercept, i.e. it includes the intercept.

• selection (str, optional (default='cyclic')) – For the CD solver ‘cd’, the coor-
dinates (features) can be updated in either cyclic or random order. If set to 'random', a
random coefficient is updated every iteration rather than looping over features sequentially
in the same order, which often leads to significantly faster convergence, especially when
gradient_tol is higher than 1e-4.

• random_state (int or RandomState, optional (default=None)) – The seed of
the pseudo random number generator that selects a random feature to be updated for the
CD solver. If an integer, random_state is the seed used by the random number generator;
if a RandomState instance, random_state is the random number generator; if None, the
random number generator is the RandomState instance used by np.random. Used when
selection is 'random'.

• copy_X (bool, optional (default=None)) – Whether to copy X. Since X is never mod-
ified by GeneralizedLinearRegressor, this is unlikely to be needed; this option exists
mainly for compatibility with other scikit-learn estimators. If False, X will not be copied
and there will be an error if you pass an X in the wrong format, such as providing integer X
and float y. If None, X will not be copied unless it is in the wrong format.
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• check_input (bool, optional (default=True)) – Whether to bypass several checks
on input: y values in range of family, sample_weight non-negative, P2 positive semi-
definite. Don’t use this parameter unless you know what you are doing.

• verbose (int, optional (default=0)) – For the IRLS solver, any positive number will
result in a pretty progress bar showing convergence. This features requires having the tqdm
package installed. For the L-BFGS solver, set verbose to any positive number for verbosity.

• scale_predictors (bool, optional (default=False)) – If True, estimate a scaled
model where all predictors have a standard deviation of 1. This can result in better estimates
if predictors are on very different scales (for example, centimeters and kilometers).

Advanced developer note: Internally, predictors are always rescaled for computational rea-
sons, but this only affects results if scale_predictors is True.

• lower_bounds (array-like, shape (n_features), optional (default=None))
– Set a lower bound for the coefficients. Setting bounds forces the use of the coordinate
descent solver ('irls-cd').

• upper_bounds (array-like, shape=(n_features), optional (default=None))
– See lower_bounds.

• A_ineq (array-like, shape=(n_constraints, n_features), optional
(default=None)) – Constraint matrix for linear inequality constraints of the form
A_ineq w <= b_ineq.

• b_ineq (array-like, shape=(n_constraints,), optional (default=None)) –
Constraint vector for linear inequality constraints of the form A_ineq w <= b_ineq.

• cv (int, cross-validation generator or Iterable, optional
(default=None)) – Determines the cross-validation splitting strategy. One of:

– None, to use the default 5-fold cross-validation,

– int, to specify the number of folds.

– Iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, KFold is used

• n_jobs (int, optional (default=None)) – The maximum number of concurrently
running jobs. The number of jobs that are needed is len(l1_ratio) x n_folds. -1 is
the same as the number of CPU on your machine. None means 1 unless in a joblib.
parallel_backend context.

• drop_first (bool, optional (default = False)) – If True, drop the first column
when encoding categorical variables.

• force_all_finite (bool) –

• robust (bool) –

• expected_information (bool) –

alpha_

The amount of regularization chosen by cross validation.

Type
float

alphas_

Alphas used by the model.
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Type
array, shape (n_l1_ratios, n_alphas)

l1_ratio_

The compromise between L1 and L2 regularization chosen by cross validation.

Type
float

coef_

Estimated coefficients for the linear predictor in the GLM at the optimal (l1_ratio_, alpha_).

Type
array, shape (n_features,)

intercept_

Intercept (a.k.a. bias) added to linear predictor.

Type
float

n_iter_

The number of iterations run by the CD solver to reach the specified tolerance for the optimal alpha.

Type
int

coef_path_

Estimated coefficients for the linear predictor in the GLM at every point along the regularization path.

Type
array, shape (n_folds, n_l1_ratios, n_alphas, n_features)

deviance_path_

Deviance for the test set on each fold, varying alpha.

Type
array, shape(n_folds, n_alphas)

robust

If true, then robust standard errors are computed by default.

Type
bool, optional (default = False)

expected_information

If true, then the expected information matrix is computed by default. Only relevant when computing robust
standard errors.

Type
bool, optional (default = False)

coef_table(confidence_level=0.95, X=None, y=None, mu=None, offset=None, sample_weight=None,
dispersion=None, robust=None, clusters=None, expected_information=None)

Get a table of of the regression coefficients.

Includes coefficient estimates, standard errors, t-values, p-values and confidence intervals.

Parameters

• confidence_level (float, optional, default=0.95) – The confidence level for
the confidence intervals.
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• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed or if standard errors, etc. are not desired.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

Returns
A table of the regression results.

Return type
pandas.DataFrame

covariance_matrix(X=None, y=None, mu=None, offset=None, sample_weight=None, dispersion=None,
robust=None, clusters=None, expected_information=None,
store_covariance_matrix=False, skip_checks=False)

Calculate the covariance matrix for generalized linear models.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.
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• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

• store_covariance_matrix (boolean, optional, default=False) – Whether to
store the covariance matrix in the model instance. If a covariance matrix has already been
stored, it will be overwritten.

• skip_checks (boolean, optional, default=False) – Whether to skip input vali-
dation. For internal use only.

Notes

We support three types of covariance matrices:

• non-robust

• robust (HC-1)

• clustered

For maximum-likelihood estimator, the covariance matrix takes the form ℋ−1(𝜃0)ℐ(𝜃0)ℋ−1(𝜃0) where
ℋ−1 is the inverse Hessian and ℐ is the Information matrix. The different types of covariance matrices use
different approximation of these quantities.

The non-robust covariance matrix is computed as the inverse of the Fisher information matrix. This assumes
that the information matrix equality holds.

The robust (HC-1) covariance matrix takes the form H1(𝜃)G𝑇 (𝜃)G(𝜃)H1(𝜃) where H is the empirical
Hessian and G is the gradient. We apply a finite-sample correction of 𝑁

𝑁−𝑝 .

The clustered covariance matrix uses a similar approach to the robust (HC-1) covariance matrix. However,
instead of using G𝑇 (𝜃G(𝜃) directly, we first sum over all the groups first. The finite-sample correction is
affected as well, becoming 𝑀

𝑀−1
𝑁

𝑁−𝑝 where 𝑀 is the number of groups.

References

property family_instance: ExponentialDispersionModel

Return an ExponentialDispersionModel.

fit(X, y, sample_weight=None, offset=None, store_covariance_matrix=False, clusters=None)
Choose the best model along a ‘regularization path’ by cross-validation.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Train-
ing data. Note that a float32 matrix is acceptable and will result in the entire algorithm
being run in 32-bit precision. However, for problems that are poorly conditioned, this
might result in poor convergence or flawed parameter estimates. If a Pandas data frame is
provided, it may contain categorical columns. In that case, a separate coefficient will be
estimated for each category. No category is omitted. This means that some regularization
is required to fit models with an intercept or models with several categorical columns.

• y (array-like, shape (n_samples,)) – Target values.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Individual weights w_i for each sample. Note that, for an Exponential
Dispersion Model (EDM), one has var(𝑦𝑖) = 𝜑 × 𝑣(𝑚𝑢)/𝑤𝑖. If 𝑦𝑖 ∼ 𝐸𝐷𝑀(𝜇, 𝜑/𝑤𝑖),
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then
∑︀

𝑤𝑖𝑦𝑖/
∑︀

𝑤𝑖 ∼ 𝐸𝐷𝑀(𝜇, 𝜑/
∑︀

𝑤𝑖), i.e. the mean of 𝑦 is a weighted average with
weights equal to sample_weight.

• offset (array-like, shape (n_samples,), optional (default=None)) –
Added to linear predictor. An offset of 3 will increase expected y by 3 if the link is linear
and will multiply expected y by 3 if the link is logarithmic.

• store_covariance_matrix (bool, optional (default=False)) – Whether to
store the covariance matrix of the parameter estimates corresponding to the best best model.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

get_formatted_diagnostics(full_report=False, custom_columns=None)
Get formatted diagnostics; can be printed with _report_diagnostics.

Parameters

• full_report (bool, optional (default=False)) – Print all available information.
When False and custom_columns is None, a restricted set of columns is printed out.

• custom_columns (iterable, optional (default=None)) – Print only the specified
columns.

Return type
str | DataFrame

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

linear_predictor(X, offset=None, alpha_index=None, alpha=None)
Compute the linear predictor, X * coef_ + intercept_.

If alpha_search is True, but alpha_index and alpha are both None, we use the last alpha value self.
_alphas[-1].

Parameters

• X (array-like, shape (n_samples, n_features)) – Observations. Xmay be a pan-
das data frame with categorical types. If X was also a data frame with categorical types
during fitting and a category wasn’t observed at that point, the corresponding prediction
will be numpy.nan.
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• offset (array-like, shape (n_samples,), optional (default=None)) –

• alpha_index (int or list[int], optional (default=None)) – Sets the index of
the alpha(s) to use in case alpha_search is True. Incompatible with alpha (see below).

• alpha (float or list[float], optional (default=None)) – Sets the alpha(s) to
use in case alpha_search is True. Incompatible with alpha_index (see above).

Returns
The linear predictor.

Return type
array, shape (n_samples, n_alphas)

property link_instance: Link

Return a Link .

predict(X, sample_weight=None, offset=None, alpha_index=None, alpha=None)
Predict using GLM with feature matrix X.

If alpha_search is True, but alpha_index and alpha are both None, we use the last alpha value self.
_alphas[-1].

Parameters

• X (array-like, shape (n_samples, n_features)) – Observations. Xmay be a pan-
das data frame with categorical types. If X was also a data frame with categorical types
during fitting and a category wasn’t observed at that point, the corresponding prediction
will be numpy.nan.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Sample weights to multiply predictions by.

• offset (array-like, shape (n_samples,), optional (default=None)) –

• alpha_index (int or list[int], optional (default=None)) – Sets the index of
the alpha(s) to use in case alpha_search is True. Incompatible with alpha (see below).

• alpha (float or list[float], optional (default=None)) – Sets the alpha(s) to
use in case alpha_search is True. Incompatible with alpha_index (see above).

Returns
Predicted values times sample_weight.

Return type
array, shape (n_samples, n_alphas)

report_diagnostics(full_report=False, custom_columns=None)
Print diagnostics to stdout.

Parameters

• full_report (bool, optional (default=False)) – Print all available information.
When False and custom_columns is None, a restricted set of columns is printed out.

• custom_columns (iterable, optional (default=None)) – Print only the specified
columns.

Return type
None
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score(X, y, sample_weight=None, offset=None)
Compute 𝐷2, the percentage of deviance explained.

𝐷2 is a generalization of the coefficient of determination 𝑅2. The 𝑅2 uses the squared error and the 𝐷2,
the deviance. Note that those two are equal for family='normal'.

𝐷2 is defined as 𝐷2 = 1 − 𝐷(𝑦true,𝑦pred)
𝐷null

, 𝐷null is the null deviance, i.e. the deviance of a model with
intercept alone. The best possible score is one and it can be negative.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Test
samples.

• y (array-like, shape (n_samples,)) – True values of target.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Sample weights.

• offset (array-like, shape (n_samples,), optional (default=None)) –

Returns
D^2 of self.predict(X) w.r.t. y.

Return type
float

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

std_errors(X=None, y=None, mu=None, offset=None, sample_weight=None, dispersion=None,
robust=None, clusters=None, expected_information=None, store_covariance_matrix=False)

Calculate standard errors for generalized linear models.

See covariance_matrix for an in-depth explanation of how the standard errors are computed.

Parameters

• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.
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• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.

• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

• store_covariance_matrix (boolean, optional, default=False) – Whether to
store the covariance matrix in the model instance. If a covariance matrix has already been
stored, it will be overwritten.

wald_test(R=None, features=None, r=None, X=None, y=None, mu=None, offset=None,
sample_weight=None, dispersion=None, robust=None, clusters=None,
expected_information=None)

Compute the Wald test statistic and p-value for a linear hypothesis.

The left hand side of the hypothesis may be specified in the following ways:

• R: The restriction matrix representing the linear combination of coefficients to test.

• features: The name of a feature or a list of features to test.

The right hand side of the tested hypothesis is specified by r.

Parameters

• R (np.ndarray, optional, default=None) – The restriction matrix representing the
linear combination of coefficients to test.

• features (Union[str, list[str]], optional, default=None) – The name of a
feature or a list of features to test.

• r (np.ndarray, optional, default=None) – The vector representing the values of
the linear combination. If None, the test is for whether the linear combinations of the
coefficients are zero.

• X ({array-like, sparse matrix}, shape (n_samples, n_features),
optional) – Training data. Can be omitted if a covariance matrix has already
been computed.

• y (array-like, shape (n_samples,), optional) – Target values. Can be omitted
if a covariance matrix has already been computed.

• mu (array-like, optional, default=None) – Array with predictions. Estimated if
absent.

• offset (array-like, optional, default=None) – Array with additive offsets.

• sample_weight (array-like, shape (n_samples,), optional,
default=None) – Individual weights for each sample.

• dispersion (float, optional, default=None) – The dispersion parameter. Esti-
mated if absent.
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• robust (boolean, optional, default=None) – Whether to compute robust standard
errors instead of normal ones. If not specified, the model’s robust attribute is used.

• clusters (array-like, optional, default=None) – Array with cluster member-
ship. Clustered standard errors are computed if clusters is not None.

• expected_information (boolean, optional, default=None) – Whether to use
the expected or observed information matrix. Only relevant when computing robust stan-
dard errors. If not specified, the model’s expected_information attribute is used.

Returns
NamedTuple with test statistic, p-value, and degrees of freedom.

Return type
WaldTestResult

class glum.IdentityLink

Bases: Link

The identity link function g(x) = x.

derivative(mu)
Get the derivative of the identity link, a vector of ones.

See superclass documentation.

Parameters
mu (array-like) –

inverse(lin_pred)
Compute the inverse link function h(lin_pred).

Gives the inverse relationship between linear predictor and the mean mu E(Y), i.e. h(linear
predictor) = mu.

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative(lin_pred)
Compute the derivative of the inverse link function h'(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative2(lin_pred)
Compute second derivative of the inverse link function h''(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

link(mu)
Return mu (identity link).

See superclass documentation.

Parameters
mu (array-like) –

class glum.InverseGaussianDistribution

Bases: TweedieDistribution

Class for the scaled Inverse Gaussian distribution.
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deviance(y, mu, sample_weight=None)
Compute the deviance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.
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• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

property include_lower_bound: bool

Return whether lower_bound is allowed as a value of y.

log_likelihood(y, mu, sample_weight=None, dispersion=None)
Compute the log likelihood.

For 1 < power < 2, we use the series approximation by Dunn and Smyth (2005) to compute the normal-
ization term.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

• dispersion (float, optional (default=None)) – Dispersion parameter 𝜑. Esti-
mated if None.

Return type
float

property lower_bound: float

Return the lowest value of y allowed.

property power: float

Return the Tweedie power parameter.

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.
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Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

unit_deviance(y, mu)
Get the deviance of each observation.

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

unit_variance(mu)
Compute the unit variance of a Tweedie distribution v(mu) = mu^power.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

unit_variance_derivative(mu)
Compute the derivative of the unit variance of a Tweedie distribution.

Equation: 𝑣(𝜇) = 𝑝× 𝜇(𝑝−1).

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

8.1. Properties 105



glum

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.Link

Bases: object

Abstract base class for Link functions.

abstract derivative(mu)
Compute the derivative of the link g'(mu).

Parameters
mu (array-like, shape (n_samples,)) – Usually the (predicted) mean.

abstract inverse(lin_pred)
Compute the inverse link function h(lin_pred).

Gives the inverse relationship between linear predictor, lin_pred X * w, and the mean, mu E(Y), i.e.
h(lin_pred) = mu.

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

abstract inverse_derivative(lin_pred)
Compute the derivative of the inverse link function h'(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

abstract inverse_derivative2(lin_pred)
Compute second derivative of the inverse link function h''(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

abstract link(mu)
Compute the link function g(mu).

The link function links the mean, mu E(Y), to the linear predictor X * w, i.e. g(mu) is equal to the linear
predictor.

Parameters
mu (array-like, shape (n_samples,)) – Usually the (predicted) mean.

106 Chapter 8. glum package



glum

class glum.LogLink

Bases: Link

The log link function log(x).

derivative(mu)
Get the derivative of the log link, one over mu.

Parameters
mu (array-like) –

Return type
numpy.ndarray

inverse(lin_pred)
Get the inverse of the log link, the exponential function.

See superclass documentation.

Parameters
lin_pred (array-like) –

Return type
numpy.ndarray

inverse_derivative(lin_pred)
Compute the derivative of the inverse link function h'(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative2(lin_pred)
Compute second derivative of the inverse link function h''(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

link(mu)
Get the log of mu.

See superclass documentation.

Parameters
mu (array-like) –

Return type
numpy.ndarray

class glum.LogitLink

Bases: Link

The logit link function logit(x).

derivative(mu)
Get the derivative of the logit link.

See superclass documentation.

Parameters
mu (array-like) –

Return type
array-like
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inverse(lin_pred)
Get the inverse of the logit link.

See superclass documentation.

Note: since passing a very large value might result in an output of one, this function bounds the output to
be between [50*eps, 1 - 50*eps], where eps is floating point epsilon.

Parameters
lin_pred (array-like) –

Return type
array-like

inverse_derivative(lin_pred)
Compute the derivative of the inverse link function h'(lin_pred).

Parameters
lin_pred (array, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative2(lin_pred)
Compute second derivative of the inverse link function h''(lin_pred).

Parameters
lin_pred (array, shape (n_samples,)) – Usually the (fitted) linear predictor.

link(mu)
Get the logit function of mu.

See superclass documentation.

Parameters
mu (array-like) –

Return type
numpy.ndarray

class glum.NegativeBinomialDistribution(theta=1.0)
Bases: ExponentialDispersionModel

A class for the Negative Binomial distribution.

A Negative Binomial distribution with mean 𝜇 = E(𝑌 ) is uniquely defined by its mean-variance relationship
var(𝑌 ) ∝ 𝜇+ 𝜃 * 𝜇2.

Parameters
theta (float, optional (default=1.0)) – The dispersion parameter from unit_variance
𝑣(𝜇) = 𝜇+ 𝜃 * 𝜇2. For 𝜃 <= 0, no distribution exists.

References

For the log-likelihood and deviance:

• M. L. Zwilling Negative Binomial Regression, The Mathematica Journal 2013. https://www.
mathematica-journal.com/2013/06/27/negative-binomial-regression/

deviance(y, mu, sample_weight=None)
Compute the deviance.

Parameters
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• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

8.1. Properties 109



glum

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

log_likelihood(y, mu, sample_weight=None, dispersion=1)
Compute the log likelihood.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

• dispersion (float, optional (default=1.0)) – Ignored.

Return type
float

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –
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property theta: float

Return the Negative Binomial theta parameter.

unit_deviance(y, mu)
Get the deviance of each observation.

Parameters

• y (ndarray) –

• mu (ndarray) –

Return type
ndarray

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

unit_variance(mu)
Compute the unit variance of a Negative Binomial distribution v(mu) = mu + theta * mu^2.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

unit_variance_derivative(mu)
Compute the derivative of the unit variance of a Negative Binomial distribution.

Equation: 𝑣(𝜇) = 1 + 2× 𝜃 × 𝜇.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)
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variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.NormalDistribution

Bases: TweedieDistribution

Class for the Normal (a.k.a. Gaussian) distribution.

deviance(y, mu, sample_weight=None)
Compute the deviance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.
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• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

property include_lower_bound: bool

Return whether lower_bound is allowed as a value of y.

log_likelihood(y, mu, sample_weight=None, dispersion=None)
Compute the log likelihood.

For 1 < power < 2, we use the series approximation by Dunn and Smyth (2005) to compute the normal-
ization term.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.
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• dispersion (float, optional (default=None)) – Dispersion parameter 𝜑. Esti-
mated if None.

Return type
float

property lower_bound: float

Return the lowest value of y allowed.

property power: float

Return the Tweedie power parameter.

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

unit_deviance(y, mu)
Get the deviance of each observation.

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

unit_variance(mu)
Compute the unit variance of a Tweedie distribution v(mu) = mu^power.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)
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unit_variance_derivative(mu)
Compute the derivative of the unit variance of a Tweedie distribution.

Equation: 𝑣(𝜇) = 𝑝× 𝜇(𝑝−1).

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.PoissonDistribution

Bases: TweedieDistribution

Class for the scaled Poisson distribution.

deviance(y, mu, sample_weight=None)
Compute the deviance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

Return type
float
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deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –
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• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

property include_lower_bound: bool

Return whether lower_bound is allowed as a value of y.

log_likelihood(y, mu, sample_weight=None, dispersion=None)
Compute the log likelihood.

For 1 < power < 2, we use the series approximation by Dunn and Smyth (2005) to compute the normal-
ization term.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

• dispersion (float, optional (default=None)) – Dispersion parameter 𝜑. Esti-
mated if None.

Return type
float

property lower_bound: float

Return the lowest value of y allowed.

property power: float

Return the Tweedie power parameter.

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –
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• offset (ndarray | None) –

unit_deviance(y, mu)
Get the deviance of each observation.

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)

unit_variance(mu)
Compute the unit variance of a Tweedie distribution v(mu) = mu^power.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

unit_variance_derivative(mu)
Compute the derivative of the unit variance of a Tweedie distribution.

Equation: 𝑣(𝜇) = 𝑝× 𝜇(𝑝−1).

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.
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• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.TweedieDistribution(power=0)
Bases: ExponentialDispersionModel

A class for the Tweedie distribution.

A Tweedie distribution with mean 𝜇 = E(𝑌 ) is uniquely defined by its mean-variance relationship var(𝑌 ) ∝
𝜇power.

Special cases are:

Power Distribution
0 Normal
1 Poisson
(1, 2) Compound Poisson
2 Gamma
3 Inverse Gaussian

Parameters
power (float, optional (default=0)) – The variance power of the unit_variance 𝑣(𝜇) =
𝜇power. For 0 < power < 1, no distribution exists.

deviance(y, mu, sample_weight=None)
Compute the deviance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

Return type
float

deviance_derivative(y, mu, sample_weight=1)
Compute the derivative of the deviance with respect to mu.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,) (default=1)) – Weights or
exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

dispersion(y, mu, sample_weight=None, ddof=1, method='pearson')
Estimate the dispersion parameter 𝜑.

Parameters
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• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional
(default=None)) – Weights or exposure to which variance is inversely proportional.

• ddof (int, optional (default=1)) – Degrees of freedom consumed by the model for
mu.

• {'pearson' (method =) – Whether to base the estimate on the Pearson residuals or the
deviance.

• 'deviance'} – Whether to base the estimate on the Pearson residuals or the deviance.

• (default='pearson') (optional) – Whether to base the estimate on the Pearson resid-
uals or the deviance.

Return type
float

eta_mu_deviance(link, factor, cur_eta, X_dot_d, y, sample_weight)
Compute eta, mu and the deviance.

Compute: * the linear predictor, eta, as cur_eta + factor * X_dot_d; * the link-function-transformed
prediction, mu; * the deviance.

Returns

• numpy.ndarray, shape (X.shape[0],) – The linear predictor, eta.

• numpy.ndarray, shape (X.shape[0],) – The link-function-transformed prediction, mu.

• float – The deviance.

Parameters

• link (Link) –

• factor (float) –

• cur_eta (ndarray) –

• X_dot_d (ndarray) –

• y (ndarray) –

• sample_weight (ndarray) –

in_y_range(x)
Return True if x is in the valid range of the EDM.

Parameters
x (array-like, shape (n_samples,)) – Target values.

Return type
np.ndarray

property include_lower_bound: bool

Return whether lower_bound is allowed as a value of y.

log_likelihood(y, mu, sample_weight=None, dispersion=None)
Compute the log likelihood.

For 1 < power < 2, we use the series approximation by Dunn and Smyth (2005) to compute the normal-
ization term.
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Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Sample weights.

• dispersion (float, optional (default=None)) – Dispersion parameter 𝜑. Esti-
mated if None.

Return type
float

property lower_bound: float

Return the lowest value of y allowed.

property power: float

Return the Tweedie power parameter.

rowwise_gradient_hessian(link, coef , dispersion, X, y, sample_weight, eta, mu, offset=None)
Compute the gradient and negative Hessian of the log likelihood row-wise.

Returns

• numpy.ndarray, shape (X.shape[0],) – The gradient of the log likelihood, row-wise.

• numpy.ndarray, shape (X.shape[0],) – The negative Hessian of the log likelihood, row-
wise.

Parameters

• link (Link) –

• coef (ndarray) –

• X (MatrixBase | StandardizedMatrix) –

• y (ndarray) –

• sample_weight (ndarray) –

• eta (ndarray) –

• mu (ndarray) –

• offset (ndarray | None) –

unit_deviance(y, mu)
Get the deviance of each observation.

unit_deviance_derivative(y, mu)
Compute the derivative of the unit deviance with respect to mu.

The derivative of the unit deviance is given by −2× (𝑦 − 𝜇)/𝑣(𝜇), where 𝑣(𝜇) is the unit variance.

Parameters

• y (array-like, shape (n_samples,)) – Target values.

• mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
array-like, shape (n_samples,)
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unit_variance(mu)
Compute the unit variance of a Tweedie distribution v(mu) = mu^power.

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

unit_variance_derivative(mu)
Compute the derivative of the unit variance of a Tweedie distribution.

Equation: 𝑣(𝜇) = 𝑝× 𝜇(𝑝−1).

Parameters
mu (array-like, shape (n_samples,)) – Predicted mean.

Return type
numpy.ndarray, shape (n_samples,)

variance(mu, dispersion=1, sample_weight=1)
Compute the variance function.

The variance of 𝑌𝑖 ∼ EDM(𝜇𝑖, 𝜑/𝑠𝑖) is var(𝑌𝑖) = (𝜑/𝑠𝑖)*𝑣(𝜇𝑖), with unit variance 𝑣(𝜇) and weights 𝑠𝑖.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

variance_derivative(mu, dispersion=1, sample_weight=1)
Compute the derivative of the variance with respect to mu.

The derivative of the variance is equal to (𝜑/𝑠𝑖)*𝑣′(𝜇𝑖), where 𝑣(𝜇) is the unit variance and 𝑠𝑖 are weights.

Parameters

• mu (array-like, shape (n_samples,)) – Predicted mean.

• dispersion (float, optional (default=1)) – Dispersion parameter 𝜑.

• sample_weight (array-like, shape (n_samples,), optional (default=1))
– Weights or exposure to which variance is inverse proportional.

Return type
array-like, shape (n_samples,)

class glum.TweedieLink(p)
Bases: Link

The Tweedie link function x^(1-p) if p1 and log(x) if p=1.

derivative(mu)
Get the derivative of the Tweedie link.

See superclass documentation.
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Parameters
mu (array-like) –

inverse(**kwargs)
Compute the inverse link function h(lin_pred).

Gives the inverse relationship between linear predictor, lin_pred X * w, and the mean, mu E(Y), i.e.
h(lin_pred) = mu.

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative(**kwargs)
Compute the derivative of the inverse link function h'(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

inverse_derivative2(**kwargs)
Compute second derivative of the inverse link function h''(lin_pred).

Parameters
lin_pred (array-like, shape (n_samples,)) – Usually the (fitted) linear predictor.

link(mu)
Get the Tweedie canonical link.

See superclass documentation.

Parameters
mu (array-like) –

glum.get_link(link, family)
For the Tweedie distribution, this code follows actuarial best practices regarding link functions. Note that these
links are sometimes not canonical:

• identity for normal (p=0);

• no convention for p < 0, so let’s leave it as identity;

• log otherwise.

Parameters

• link (str | Link) –

• family (ExponentialDispersionModel) –

Return type
Link
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CHAPTER

NINE

CHANGELOG

9.1 2.7.0 - 2024-02-19

Bug fix:

• Added cython compiler directive legacy_implicit_noexcept = True to fix performance regression with cython 3.

Other changes:

• Require Python>=3.9 in line with NEP 29

• Build and test with Python 3.12 in CI.

• Added line search stopping criterion for tiny loss improvements based on gradient information.

• Added warnings about breaking changes in future versions.

9.2 2.6.0 - 2023-09-05

New features:

• Added the complementary log-log (cloglog) link function.

• Added the option to store the covariance matrix after estimating it. In this case, the covariance matrix does not
have to be recomputed when calling inference methods.

• Added methods for performing Wald tests based on a restriction matrix, feature names or term names.

• Added a method for creating a coefficient table with confidence intervals and p-values.

Bug fix:

• Fixed covariance_matrix() mutating feature names when called with a data frame. See here.

Other changes:

• When computing the covariance matrix, check whether the design matrix is ill-conditioned for all types of input.
Furthermore, do it in a more efficient way.

• Pin tabmat<4.0.0 (the new release will bring breaking changes).
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9.3 2.5.2 - 2023-06-02

Bug fix

• Fix the glm_benchmarks_analyze command line tool. See here.

• Fixed a bug in GeneralizedLinearRegressor when fit on a data set with a constant column and
warm_start=True. See here.

Other changes:

• Remove dev dependency on dask_ml.

• We now pin llvm-openmp=11 when creating the wheel for macOS in line with what scikit-learn does.

9.4 2.5.1 - 2023-05-19

Bug fix:

• We fixed a bug in the computation of log_likelihood(). Previously, this method just returned None.

9.5 2.5.0 - 2023-04-28

New feature:

• Added Negative Binomial distribution by setting the 'family' parameter of GeneralizedLinearRegressor
and GeneralizedLinearRegressorCV to 'negative.binomial'.

9.6 2.4.1 - 2023-03-14

Bug fixes:

• Fixed an issue with _score_matrix() which failed when called with a tabmat matrix input.

Other changes:

• Removes unused scikit-learn cython imports.

9.7 2.4.0 - 2023-01-31

Other changes:

• LogitLink has been made public.

• Apple Silicon wheels are now uploaded to PyPI.
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9.8 2.3.0 - 2023-01-06

Bug fixes:

• A data frame with dense and sparse columns was transformed to a dense matrix instead of a split matrix by
_set_up_and_check_fit_args(). Fixed by calling tabmat.from_pandas on any data frame.

New features:

• The following classes and functions have been made public: BinomialDistribution,
ExponentialDispersionModel, GammaDistribution, GeneralizedHyperbolicSecant,
InverseGaussianDistribution, NormalDistribution, PoissonDistribution, IdentityLink ,
Link , LogLink , TweedieLink , get_family() and get_link().

• The distribution and link classes now feature a more lenient equality check instead of the default identity check,
so that, e.g., TweedieDistribution(1) == TweedieDistribution(1) now returns True.

9.9 2.2.1 - 2022-11-25

Other changes:

• Fixing pypi upload issue. Version 2.2.0 will not be available through the standard distribution channels.

9.10 2.2.0 - 2022-11-25

New features:

• Add an argument to GeneralizedLinearRegressorBase to drop the first category in a Categorical column using
[implementation in tabmat](https://github.com/Quantco/tabmat/pull/168)

• One may now request the Tweedie loss by setting the 'family' parameter of GeneralizedLinearRegressor
and GeneralizedLinearRegressorCV to 'tweedie'.

Bug fixes:

• Setting bounds for constant columns was not working (bounds were internally modified to 0). A similar issue
was preventing inequalities from working with constant columns. This is now fixed.

Other changes:

• No more builds for 32-bit systems with python >= 3.8. This is due to scipy not supporting it anymore.

9.11 2.1.2 - 2022-07-01

Other changes:

• Next attempt to build wheel for PyPI without --march=native.
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9.12 2.1.1 - 2022-07-01

Other changes:

• We are now building the wheel for PyPI without --march=native to make it more portable across architectures.

9.13 2.1.0 - 2022-06-27

New features:

• Added aic(), aicc() and bic() attributes to the GeneralizedLinearRegressor. These attributes provide
the information criteria based on the training data and the effective degrees of freedom of the maximum likelihood
estimate for the model’s parameters.

• std_errors() and covariance_matrix() of GeneralizedLinearRegressor now accept data frames with
categorical data.

Bug fixes:

• The score() method of GeneralizedLinearRegressor and GeneralizedLinearRegressorCV now ac-
cepts offsets.

• Fixed the calculation of the information matrix for the Binomial distribution with logit link, which affected
nonrobust standard errors.

Other:

• The CI now runs daily unit tests against the nightly builds of numpy, pandas and scikit-learn.

• The minimally required version of tabmat is now 3.1.0.

9.14 2.0.3 - 2021-11-05

Other:

• We are now specifying the run time dependencies in setup.py, so that missing dependencies are automatically
installed from PyPI when installing glum via pip.

9.15 2.0.2 - 2021-11-03

Bug fix:

• Fixed the sign of the log likelihood of the Gaussian distribution (not used for fitting coefficients).

• Fixed the wide benchmarks which had duplicated columns (categorical and numerical).

Other:

• The CI now builds the wheels and upload to pypi with every new release.

• Renamed functions checking for qc.matrix compliance to refer to tabmat.
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9.16 2.0.1 - 2021-10-11

Bug fix:

• Fixed pyproject.toml. We now support installing through pip and pep517.

9.17 2.0.0 - 2021-10-08

Breaking changes:

• Renamed the package to glum!! Hurray! Celebration.

• GeneralizedLinearRegressor and GeneralizedLinearRegressorCV lose the fit_dispersion param-
eter. Please use the dispersion() method of the appropriate family instance instead.

• All functions now use sample_weight as a keyword instead of weights, in line with scikit-learn.

• All functions now use dispersion as a keyword instead of phi.

• Several methods GeneralizedLinearRegressor and GeneralizedLinearRegressorCV that should
have been private have had an underscore prefixed on their names: tear_down_from_fit(),
_set_up_for_fit(), _set_up_and_check_fit_args(), _get_start_coef(), _solve() and
_solve_regularization_path().

• glum.GeneralizedLinearRegressor.report_diagnostics() and glum.
GeneralizedLinearRegressor.get_formatted_diagnostics() are now public.

New features:

• P1 and P2 now accepts 1d array with the same number of elements as the unexpanded design matrix. In this
case, the penalty associated with a categorical feature will be expanded to as many elements as there are levels,
all with the same value.

• ExponentialDispersionModel gains a dispersion() method.

• BinomialDistribution and TweedieDistribution gain a log_likelihood() method.

• The fit() method of GeneralizedLinearRegressor and GeneralizedLinearRegressorCV now saves
the column types of pandas data frames.

• GeneralizedLinearRegressor and GeneralizedLinearRegressorCV gain two properties:
family_instance and link_instance.

• std_errors() and covariance_matrix() have been added and support non-robust, robust (HC-1), and clus-
tered covariance matrices.

• GeneralizedLinearRegressor and GeneralizedLinearRegressorCV now accept family='gaussian'
as an alternative to family='normal'.

Bug fix:

• The score() method of GeneralizedLinearRegressor and GeneralizedLinearRegressorCV now ac-
cepts data frames.

• Upgraded the code to use tabmat 3.0.0.

Other:

• A major overhaul of the documentation. Everything is better!

• The methods of the link classes will now return scalars when given scalar inputs. Under certain circumstances,
they’d return zero-dimensional arrays.
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• There is a new benchmark available glm_benchmarks_run based on the Boston housing dataset. See here.

• glm_benchmarks_analyze now includes offset in the index. See here.

• glmnet_python was removed from the benchmarks suite.

• The innermost coordinate descent was optimized. This speeds up coordinate descent dominated problems like
LASSO by about 1.5-2x. See here.

9.18 1.5.1 - 2021-07-22

Bug fix:

• Have the linear_predictor() and predict() methods of GeneralizedLinearRegressor and
GeneralizedLinearRegressorCV honor the offset when alpha is None.

9.19 1.5.0 - 2021-07-15

New features:

• The linear_predictor() and predict() methods of GeneralizedLinearRegressor and
GeneralizedLinearRegressorCV gain an alpha parameter (in complement to alpha_index). More-
over, they are now able to predict for multiple penalties.

Other:

• Methods of Link now consistently return NumPy arrays, whereas they used to preserve pandas series in special
cases.

• Don’t list sparse_dot_mkl as a runtime requirement from the conda recipe.

• The minimal numpy pin should be dependent on the numpy version in host and not fixed to 1.16.

9.20 1.4.3 - 2021-06-25

Bug fix:

• copy_X = False will now raise a value error when X has dtype int32 or int64. Previously, it would only
raise for dtype int64.

9.21 1.4.2 - 2021-06-15

Tutorials and documentation improvements:

• Adding tutorials to the documentation.

• Additional documentation improvements.

Bug fix:

• Verbose progress bar now working again.

Other:

• Small improvement in documentation for the alpha_index argument to predict().
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• Pinned pre-commit hooks versions.

9.22 1.4.1 - 2021-05-01

We now have Windows builds!

9.23 1.4.0 - 2021-04-13

Deprecations:

• Fusing the alpha and alphas arguments for GeneralizedLinearRegressor. alpha now also accepts array
like inputs. alphas is now deprecated but can still be used for backward compatibility. The alphas argument
will be removed with the next major version.

Bug fix:

• We removed entry points to functions in glum_benchmarks from the conda package.

9.24 1.3.1 - 2021-04-12

Bug fix:

• glum._distribution.unit_variance_derivative() is evaluating a proper numexpr expression again (re-
gression in 1.3.0).

9.25 1.3.0 - 2021-04-12

New features:

• We added a new solver based on scipy.optimize.minimize(method='trust-constr').

• We added support for linear inequality constraints of type A_ineq.dot(coef_) <= b_ineq.

9.26 1.2.0 - 2021-02-04

We removed glum_benchmarks from the conda package.

9.27 1.1.1 - 2021-01-11

Maintenance release to get a fresh build for OSX.
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9.28 1.1.0 - 2020-11-23

New feature:

• Direct support for pandas categorical types in fit and predict. These will be converted into a
CategoricalMatrix.

9.29 1.0.1 - 2020-11-12

This is a maintenance release to be compatible with tabmat>=1.0.0.

9.30 1.0.0 - 2020-11-11

Other:

• Renamed alpha_level attribute of GeneralizedLinearRegressor and
GeneralizedLinearRegressorCV to alpha_index.

• Clarified behavior of scale_predictors.

9.31 0.0.15 - 2020-11-11

Other:

• Pin tabmat<1.0.0 as we are expecting a breaking change with version 1.0.0.

9.32 0.0.14 - 2020-08-06

New features:

• Add Tweedie Link.

• Allow infinite bounds.

Bug fixes:

• Unstandardize regularization path.

• No copying in predict.

Other:

• Various memory and performance improvements.

• Update pre-commit hooks.
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9.33 0.0.13 - 2020-07-23

See git history.

9.34 0.0.12 - 2020-07-07

See git history.

9.35 0.0.11 - 2020-07-02

See git history.

9.36 0.0.10 - 2020-06-30

See git history.

9.37 0.0.9 - 2020-06-26

See git history.

9.38 0.0.8 - 2020-06-24

See git history.

9.39 0.0.7 - 2020-06-17

See git history.

9.40 0.0.6 - 2020-06-16

See git history.
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9.41 0.0.5 - 2020-06-10

See git history.

9.42 0.0.4 - 2020-06-08

See git history.

9.43 0.0.3 - 2020-06-08

See git history.

genindex
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